AFRL-IF-RS-TR-2001-235
Final Technical Report
November 2001

INTEGRATED DESIGN ENVIRONMENT FOR
ASSURANCE (IDEA)

Harris Corporation

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J759/00

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government,

120020308 061

-_—
AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-235 has been reviewed and is approved for publication.

APPROVED: ,61,«/(/4 Y/

NK S. FAMONICA
Project Engineer

Y T3l

FOR THE DIRECTOR: MICHAEL L. TALBERT, Major, USAF
Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Rd, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

INTEGRATED DESIGN ENVIRONMENT FOR ASSURANCE (IDEA)

Joe Tallet

Contractor: Harris Corporation

Contract Number: - F30602-00-C-0067

Effective Date of Contract: 20 April 2000

Contract Expiration Date: 17 July 2001

Short Title of Work: Integrated Design Environment for Assurance
(IDEA)

Period of Work Covered: Apr 00 — Jul 01

Principal Investigator: Joe Tallet
Phone: (321) 984-6376
AFRL Project Engineer: Frank S. Lamonica
Phone: (315) 330-2055

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Frank S. Lamonica, AFRL/IFTD, 525 Brooks Rd, Rome, NY,
13441-4505.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0168

Public reporting burden for this callection of information is estimated to average 1 hour per respanse, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the coflection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headguarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Aslington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503

| 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Nov 01 Final Apr 00 - Jul 01
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-00-C-0067
INTEGRATED DESIGN ENVIRONMENT FOR ASSURANCE (IDEA) PE - 63760E
PR -IAST
| 6. AUTHOR(S} TA -00
WU - 05
Joe Tallet
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES} 8. PERFORMING ORGANIZATION
REPORT NUMBER

Harris Corporation
Government Communications Systems Division
PO Box 37

Melbourne, FI. 32902
8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Defense Advanced Research Projects Agency AFRL/IFTD) AFRL-IF-RS-TR-2001-235
3701 North Fairfax Drive 525 Brooks Rd il

Arlington, VA 22203-1714 Rome, NY 13441-4505

| 11, SUPPLEMENTARY NOTES

AFRL Project Engineer: Frank S. Lamonica, IFTD, 315-330-2055

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This report covers the research and development (R&D) performed by Harris Corporation under a DARPA sponsored
effort entitled Integrated Design Environment for Assurance (IDEA). The intent of IDEA was to provide Information
Assurance (IA) analysts with the capability to select appropriate software IA tools, seamlessly link them to system data and
other tools, initiate and monitor execution, and merge and present results. A key feature is the incorporation of Fuzzy
Fusion technology to enable the merging (fusion) of results from individual tools and the presentation of those results in a
composite fashion to provide a concise and timely report of a system's security posture. IDEA was performed under
DARPA's Information Assurance Science & Engineering Tools (IASET) program. The IASET program came to a
premature conclusion in FY00. As a result, Harris Corporation was not able to develop a demonstrable prototype as
originally planned. An architectural design, however, was completed and is reported on.

14, SUBJECT TERMS 15. NUMBER OF PAGES
296
Information Assurance, Software Tools, Tool Integration, Environments, Data Fusion, 16. PRICE CODE
Common System Model
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED _ UL

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 84

Table of Contents

1 SCOPE 1
L1 ORIGINAL EFFORT «.uiuitueescuceresessrssrsrsnssnsssessenssesssonsessessesssesssessessasnssessesasssssssssssssssssnsosssensenenees e sesnn 1
1.2 INITIAL FUZZYFUSIONT™ CAPABILITY w.vcvetereerrrecseseesisessssseetsemseesesesssssssassssessssenssssessssssssssssessseeseesne. 3
1.3 FUZZYFUSIONTM RESULTS «cuvveesrrsesrerrassesrssenersssessssssssessssesesssesessnssssessssssseesssssssssserssssssssssmsensssssesensnssses 6

2 DOCUMENT OVERVIEW 7

3 REFERENCE DOCUMENTS 8

4 PROGRAM SUMMARY 9
4.1
42

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5 Level 3 FuzzvFusion™ - How do I get 1o a vulnerable node that allows me access 1o critical

datq? 16
4.2.6 Level 4 FuzzyFusion™ - How do [increase the level of difficulty of following a path 1o the

CIHCAL HOUR? ...eeeeveeirenieeereetcsteeeeeecers s e e ee st see e s s setat s se s s sass e ettt s et ee e ettt oo sees 19
4.2.7 SUIIIAEY «.vovvviveninetorerennecssiesiseseseeresessssstsessessossasseseseesssessnsessssesmsasasessssssssessesenensonssssssssssssesenenenss 19
4.3 TECHNICAL APPROACH ruvvevrrseererserererssssosesssscossssesstsencnseerassssasessesssesssasssessssssensssassssssesssessssensmsnsesmes 20
43,17 The FuzzyFusion™ COMpPORERL QQUUDGSECeveeeeeereeeerereessereesereeseressessesssssssssses e 20
4.3.2 Client vulnerability MAPDIAG GUILRIIIES uuovueeveeseererereereseesessererserereeseseasesssssesesssss e s e s e 21
4.3.3 THE FUZZVEUSIONTM COMPONEHL ovveievireeereeeeeseereeeresssesreseeesssesessesasssssessssessssssssteseeeeeeeeeeseee s 24
4.3.4 Data input requirements fOr (A€ COMPORCH .o aeueeeeeerrirseseeereresssrsesssssesssseses s seee e eeesessens 25
433 PrOCESSING LAQ QLA c.cvvereeeereenecververineeeieeieistesteeeeeeereseeseesseessesasessssessssessasssssnessssssssss st ees e eses 27
44 THE PROOF-OF-CONCEPT PROTOTYPE veuvevetererrecseesssesesesssesssnssessessssesssensssssassssesssssesssssssesssssssssssessssssns 34
4.4.1 LOGICAL ARCHITECTURE
ﬂ»_.j TESTING AND EVALUATION vueeteverieetevesseseesiseenessessessssesesessssssesssesssssessossssassonsessessnessssnesmssmeseesesn s
4.5.1 ARQIVSIS Qf FESHILS ovvevevereeieeiest e teseetetee e satssee e seseseesessssssessessensensessassensensestsmeeme e s eeeseeseesess
4.5.2 QUALIEY Of RESUILS v.veevveeeereerereriaeeeesierisiseentoseeeeseesessssasesesesasessesessasenseseasessasessesssessses s eeeneesseees
453 COMPAFISON Of FESUILS cvevevevenrererierieeetessetesseeeeeseeeveeseeseessesssesessasesesssssesessesssesssssessste e eeeeeeeeses
4.6 RESEARCH INTO NATURAL LANGUAGE PROCESSING
4.6.1 DISCUSSION Of RESEAFCH c.v.nveeveveiieeeereeeeneeiereeeeneesteseemsseeeeessessssseesssasssssssassesesssses st e esee e s eeeeen
5 CONCLUSIONS 61
5.1 IDEA PROGRAM CONCLUSIONS ..coveriuecrereersserserescesessssesesssssessossoncsessessasesessssessessasesssnensssesensossessesesses 61
5.2 AREAS FOR IMPROVEMENT ...vevevereesserssensassessntesssessssesssesssssescnrasessssnsessessssssssssssasssessasassssssesessnsesssnssses 61
6 FUTURE WORK : 62
M REAL-TIME VULNERABILITY ANALYSIS
Qz REAL-TIME INTRUSION DETECTION
6.3 FIXING VULNERABILITIES
M MAINTAINING HISTORIES
6.4.1 THUSL oottt ettt e s sa et s a e st et et e et e e s e eae et e aeea e et earaserensnnee st eeeeseeseseen
6.5 SECURITY POLICY META-LANGUAGE

Q GENERALIZATION OF FUZZY FUSION™
6.7 NATURAL LANGUAGE PROCESSING OF VULNERABILITIES

7 APPENDIX A — DATA 65
Tl LVE TABLE iscciisessseressiassentsssrsssssssssssserssssssestesssesssessnsassssssnssensossassossnsssasosssesessnsssssssasssassssasssssns 65
12 CONDITION TABLE wevuveereerereermssnssresessessesseessessssssasessossosesssssnssnnes reetssestesessetieeneertesaesranrassreonanas 77

1.3 RULI T ABLE tivtesstereseeereerineerassisseesssesssseessntessssssssessnsssessnsassasesssessssesorstesastas sobansesssorannisssnsssasessssassnssess 77
T4 CVE INFORMATION ctiiritiertersntessererensesstesessessstesasssessssessssses snnesnessssssssstessssssssnnessssassssssassessssssssaassnses 88
7.5 FUZZY SET CONTRIBUTIONS tetereeterterereeesnresestsssssesessesasssosesenssratssmesssesssssesessssssessssessessssessessorsossrsonaen 93
8 APPENDIX B - XML INFORMATION 95
8.1 XML — A BETTER COMPONENT PROTOCOL..c.oouuurrrerrmsereeeremsinassssssssssssssssnnsene 95
8.2 XML tsiioreieieecirecestee st sttt st st ses st e e s h e et s bR b s s h st e e b eR e R e R e b s e et e R e e e b e R e R s s an et aRtarens 97
822 Dissimilar Componeit MOACLSooaveeeeneeeeceeeie et eesteesriree e cereere s e e sessses s eseresassrsasans 99
823 LACK OF ORB SUPDOI c.eooeeeveieeeieii s eeieeetesievveeevtsessse s sevsessstssasssstassasbesnssatessessstessssnasssnsssssesnens 99
824 TRECHTUCE CIUSTICS cvcevevieeeieeeee e eeeeineeeetieeee st e e e e setste e e s bt e ee et e s sennmresssaarereseasanseseanaessestnesns 100
9 APPENDIX C-PROTOTYPE INSTRUCTIONS 104
9.1 USING DTS TO IMPORT SCANNER TEST DATA FROM AN ACCESS DATABASE INTO AN MSDE
DIATABASE teveererresseressssesssessorsassessossesssmsessesssestaressssssestestesessoresessessssessistsnsesssssssasssssssesssesssssessorsassssssanassonsans 104
9.2 IDEA XML GENERATOR wteteteeeriesierereresssnssenessesssssessossssoseossssissssiesssssssorsssassastassssassassssastanesanssasssses 111
9.3 IDEA DEMO INTERFACE «vevetieereereesseersseessreesssessasressssssssessssnesersnossesssarsssssessasesssnassssnissssnssnsssnsssssnsonas 114
10 APPENDIX D - IDEA ARCHITECTURE 16
11 APPENDIX E - META-LANGUAGE 264
12 APPENDIX F — IDEA: AN INFORMATION SUPERSTRUCTURE 272
ii

List of Figures

FIGURE 1.1-1 — INITIAL SCOPE OF IDEA AS PRESENTED AT 111 2™ BLULE RIBBON SESSION
FIGURE 1.2-1 — EARLY VIEW OF FUZZYFUSIONTM

...

FIGURE 4.2-2 — THE HOST APPLICATION USES A VULNERABILITY SCANNER TO GENERATL DATA FOR THE
FUZZY FUSIONTM COMPONENT veveverrietereesssereressesssesssessessesseosssossessssssssssesssessessaessosssssesssesssesmesasasstersesssssnesees

FIGURE 4.2-3 — DISTRIBUTED REAL-TIME VULNERABILITY ASSESSMENT APPLICATION

FIGURE 4.2-4 — NETWORK CONFIGURATION

FIGURE 4.2-8 — KEY NODE ON NETWORK BECOMES MORE VULNERABLE vuveeretessteesesreessesseesesssassonnenorssesasesessssones 16
FIGURI: 4.2-9 — EXTERNAL TO INTERNAL ATTACK PATH TO A KEY NODE
FIGURE 4.2-10 — INTERNAL TO INTERNAL ATTACK PATH TO KEY NODE wvvevtversieereeessesssnesosesssssesnsessesssesssssassanesns 18

FIGURLE 4.3-1 — DATA FOR THE FUZZYFUSIONTM COMPONENT 1evvverveereeersiestesseessessasssessessessressnssssessnssssesssssesssesnes
FIGURE 4.3-2 — MAPPING TOOL VULNERABILITIES TO IVES ...

FIGURE 4.3-5 — DIAGRAM OF FUZZYFUSIONTM INPUTS. «uvvvvreciveessecesseessneeossnessnsesssossssssssesseesssossssssssassssssssasessnsonse 28
FIGURE 4.3-6 - DIAGRAM OF FUZZYFUSIONTM QUTPUTS eeveetecsereruresesosseesesssessssasesssssemsssssssssssssssssmessssssessesssessssses 29
FIGURE 4.3-7 —“CALCULATION OF NUMERIC GRADE, SUB-STEP A

FIGURE 4.3-8 -CALCULATION OF NUMERIC GRADE, SUB=STEP B e eteueeerrrerressesesereseessesessssesssssssssessessssasssaseesnenns
FIGURE 4.3-9 — CALCULATION OF BELIET veevvvecrssureeersneesronsesessessssssessssssessssssssssssessrasesssssosersssesasessssossssssossassassanes 30
FIGURL 4.3-10 — CALCULATION OF OPPORTUNITY FOR EXPLOITATION. uuveerreesessrreriesssssrescersessessasssssessssssasescosns 31
FIGURE 4.3-11- FUZZY MEMBERSHIP FUNCTION .vveecvecseeresssesssserssnsacssssseasessescsssssesssssssessasasssnsesssssssssssssassssnsesessans 31
FIGURE 4.3-12 — CHARACTERISTIC MAPPINGS OF 16 INTERMEDIATE CONDITIONS TO END CONDITION FUZZY
SETS . vveersreesssssrsereesessreessssssassosssssnsessssesssnssssnsesssssssessessssasstostessssssnssessssssssssasessossstessssssssssessseressrassasenessassastons 31
FIGURE 4.3-13 — FUZZY MEMBERSHIP FUNCTION INCORPORATING FUZZY BELIEF MEASURES «uvvvveeeeeserssrasveressens 32
FIGURE 4.3-14 — DEFUZZIFICATION METHOD wetevevrrreerrerrerersseorssecssenmessosssesssssrsssssssssssesessssssssssssressansossssssssssssssssns 32
FIGURE 4.3-15 — CALCULATION OF OFE FOR END CONDITION cvvtseveeerseeessrvereesssesssresssesssesssssessssssssessosessssessnsssss 32
FIGURE 4.3-16 — CALCULATION OF FINAL NODE VALUE civeserisestereeecessssssaseresassrsssessessssasvessssssssssaseesesssssaassossessanss 32
FIGURE 4.3-17 - STAT® ANALYZER FUZZYFUSION™ INFERENCING ALGORITHM cvvveevveevreevesssnvesaneces 33

FIGURE 4.4-1: COMPONENT LAYOQUT
FIGURE 4.4-2: MAIN
FIGURE 4.4-3: MAIN
FIGURE 4.4-4: MAIN
FIGURE 4.4-5: MAIN
FIGURE 4.5-1 - DISTRIBUTION OF SEVERITY LEVELS REPORTED BY STAT® SCANNER DURING FORTY-FOUR

SCANS OF TWELVE NODES. coveveveeeeresseesssaresesersessssssaesessssssesssssssasenssassrssssssessssssssssesossssssasssassosssssasssessssrsansersass 53
FIGURE 4.5-2 — FUZZYFUSIONTM COMPONENT RESULTS tuuvveeesesrereeesssssesnsrsrersssssnsesessssnnseasesssssrassessossssssasssassssoses 54
FIGURE 4.5-3 END CONDITIONS USING FUZZY MEMBERSHIP CONTRIBUTIONS AND GRADE AND OFEveeee. 55
FIGURE 4.5-4 — MODIEYING OFE ..cviiiirurererrrrrescrssnsessaserssssrsosessssssesessnsrsesssessssssesssssssassnsssasssssssasssessssassesssasssssnasss
FIGURE 4.5-5 — END CONDITIONS USING FuzzY MEMBERSHIP CONTRIBUTIONS AND OFE .
FIGURE 4.5-6 — MODIFYING OFE o csivireernrerriserreerereesrerssreesessseressesssssssssessesssssnsssssssnssesssssssessassasessssrsssnnasssssssnn
FIGURE 6.3-1— MAPPING OF THE END CONDITIONS TO THE VULNERABILITIES THAT LED TO 1T
FIGURE 8.1-1 — BASIC MIDDLEWARE ARCHITECTURE cvessseesseessesenseresesssssseseresssossssesssosssnsasssssssssssssasasessersannsassessane
FIGURE 8.1=2 — A SIMPLIFIED VIEW vvereeveesssrensereresssnssesesessssssassssessesesssssssasssnssrsssssssssssssasssssresssssssssssssessassssnssssssssen
FIGURE 8.1-3 — BRIDGE BETWEEN TWO DISSIMILAR COMPONENT MODELS
FIGURE 8.1-4 — INTERFACE CONFLICT WITH ADAPTER SOLUTION 1vvieeerueresserereessrsessssecssssssssssssescsssnsersssasassessasasses
FIGURL 8.2-1 — AN XML DOCUMENT treuveersseeeessersssssressssssesssessansesesssesssansessessssssaassesssssussssssssassssnsssssssssssansasssssns
FIGURE 8.2-2 — XML INTEREFAC ueresesrsresssneseressssesssenseessassessessarssnssssssassassssesesssssssssssrasssssrasssssrssssssessssssransesssasses
FIGURE 8.2-3 — XIML BRIDGE «ucvveeeiersrsserisersscerssenreessesssssssssssntasssssassassressssssssesaneassssransesssassssnssnsssssasssssasanessasssass

FIGURE 8.2-5 = XIML AGEN T teevterevrreesrreessesserseeseessessseesesssesssssssesssssnssssssssessssonessssssssasssesessessesssssssessessssssssnessnse 100
FIGURE 8.2-6 — EXAMPLE OF IDL ooiiiiiiiieiitiiiieeiiietiirtecee s seccseteesbssssesessbeessssosstsssammsesensessatsessmmesesssssseseneraens 101
FIGURE 8.2-7 = EXAMPLE XML INTERFACE tieertevtieesereertessessseesseessesssesssesssesseessesssessasesssesssessssssssssesseesasessasases 102

FIGURE 8.2-8 — ExAMPLE XML DOCUMENT

List of Tables

TABLE 4.1-1 — THE LEVELS AND PURPOSES OF THE INTELLIGENCE DATA FUSION PROCESS ovvveveererrriesneesessenessses 9
TABLE 4.3-1 — IAT MAPPED TO PRE AND POST CONDITIONS verieirerrereeesssseeerecsesssssrsesseesiessssssssssnsessessssasessessannees 21
TABLE 4.3-2 — STAT® SCANNER VULNERABILITY DESCRIPTION
TABLE 4.3-3 — IVE AND DESCRIPTION wrecrrvvrerercnesssereesersanesssnessssessssasssssisessssonsssssssssssssssssssnssssssnsassassaessssaossssenssass
TABLE 4.3-4 — STAT® SCANNER VULNERABILITY INFORMATION
TABLE 4.3-5 — CVE DESCRIPTION

..

...

...

TABLF 4.3-8 — SAMPLE FUZZYFUSIONT™ COMPONENT OUTPUT (AFTER TRANSLATED FROM XML) wevinnivrveierenee 24
TABLE 4.3-9 — TAG HIERARCHY FOR IDEA™S XML DA T Auiiirrieeriirerisiciireriesesosssecsisssesssssssssssssesssssssssessssrassasesas 26

TABLE 7.2-1 — VULNERABILITY CATEGORIES AND THEIR DEFINITIONS...
TABLE 7.5-1 = FUZZY MEMBERSHIP FUNCTIONS «.eeertirecererereeesstesesssessscasaseseronsenssssurssonssnmesssssesssesssassessassnsssss 93

1 Scope

This document describes the research findings of the Integrated Design Environment for
Assurance (IDEA) effort and serves as the final technical report for the effort. It includes the
original effort of the IDEA prototype design, as well as additional research activities in the
reasoning domain of Fuzzy Fusion™. IDEA was part of the Defense Advanced Research

Projects Agency (DARPA) sponsored Information Assurance Science and Engineering
Tools (IASET) Program.

1.1 Original Effort

The original IDEA effort's objective was to develop and demonstrate a prototype for an
integrated Design Environment for system security engineering/design team members. The
objective was to create an information repository, accessible through various Application
Programming Interfaces (APls) and Graphical User Interfaces (GUIs). This repository
would contain both inputs to, and outputs of, various information assurance tools, and
would serve as the design model for all aspects that are security relevant about a system
design. The thought was that tool technology would evolve and mature, but the information
generated by a tool, and the information supplied as input, would be treated as data
accessible to all tools in a given tool suite. This would preserve the security relevant design
information, allow it to be augmented as technology matured, and maintain a living
database that represented the state of the system design. Harris developed a detailed
design, and delivered the IDEA architecture report as required.

In October 2000, the IASET program was identified by DARPA for early termination. At
that time, Harris had fulfilled the six month milestone deliverables for a system design for
IDEA. With the termination of IASET, there would be no prototype tools provided by other
IASET participants to integrate with the IDEA information repository. in February 2001, it
was decided to emphasize FuzzyFusion™ research with remaining funding.
FuzzyFusion™ combines Data Fusion and Fuzzy Logic in a unique way to generate a
comprehensible vulnerability assessment result. IDEA was originally scoped to collect
results of several external tools and assess the results with the FuzzyFusion™ technology.
It was now decided that IDEA would build, test, and deliver a FuzzyFusion™ component
that would test the concepts for higher-layers of data fusion technology. This report, in
effect is delivering the “Fusing” component illustrated in Figure 1.1-1.

IDEA Engine 5 Tool Engine
e
1l 1l

I Repository APl |

v Aogisoday

Figure 1.1-1 — Initial scope of IDEA as presented at the 2" Blue Ribbon session

To understand the significance of the effort's change in emphasis, it is important to
understand how IDEA was first intended to support security engineers.

IDEA was initially a continuation of a previous development known as Network Vulnerability
Tool (NVT), with the addition of a Design focus. It was to aid security engineers in the
assessment of networks prior to, during, and after deployment. The feature set for IDEA
proposed a capability to support network design and vulnerability assessment using a
common repository.

The principal enabling factor of the IDEA effort was its centralized repository of information.
This repository stored network design information as well as the results from executing an
external design tool(s). The Common System Model (CSM) format defined to store network
data was an effort to correlate the various external tool’s outputs and data formats. This
common data format was used for communication between the IDEA repository and
external tools.

FuzzyFusion™, as an external tool, relied upon IDEA’s common repository for its data. The
benefit of having FuzzyFusion™ designed and subsequently implemented as an external-
to-IDEA tool allowed the IDEA component to focus on its correlation of data between tools.
Data stored by IDEA that was required by FuzzyFusion™ would be formatted and sent to
the FuzzyFusion™ component as if the Fuzzy Fusion™ component were just another
integrated tool in the framework

As a component, FuzzyFusion™ played a significant though small role in the initial IDEA
effort. its capabilities were segregated from IDEA by the component interface. However, as
part of the overall IDEA solution to an Analysis Design Environment, it was noted that there
was some information within the Common System Model that a FuzzyFusion™ component
would require. This evolved to a design where tools have the capability to interface to the

repository. Allowing tools to retrieve IDEA repository information put two data-driven
burdens upon IDEA: :

1) Ensure a common data-solution for all external tools, and
2) Provide a flexible interface capable of handling tool requests.

Understanding the initial scope of IDEA and how FuzzyFusion™ integrates with it is very
useful in understanding the impact of the re-emphasis. IDEA was initially designed to:

» Support network design,
Provide application support for multiple security tools,
Contain a common database for storing multi-tool results,

Be capable of managing multiple networks independently,

YV V V V¥

Provide a meta-language to support the generation and management of security
policies,

» Provide FuzzyFusion™ technology for assessing vuinerability analysis tool results.

During the first phase of this effort, the full IDEA application was designed. The Architecture
document for the initial design of IDEA is included in Appendix C.

FuzzyFusion™ was an additional capability for IDEA. As an external tool, FuzzyFusion™
would maintain its own data (not share a database with IDEA) and interface with IDEA for
necessary information. IDEA was designed to address the formatting of vulnerability tool
resuits into the Vulnerability Taxonomy. The FuzzyFusion™ component would be capable

of accepting taxonomy information and returning a measure of the vulnerability for each
node within a network.

At the time of the change in emphasis, the details of the IDEA-FuzzyFusion™ component
interface were still under construction. After the change in direction, it became necessary
to better identify the interface and characterize the behavior of the FuzzyFusion™
component.

1.2 Initial FuzzyFusion™ Capability

Figure 1.2-1 shows the initial FuzzyFusion™ capability, which was to accept the results
from data collection agents and correlate the results. The single network representation
was to be implemented by the CSM repository. The multi-tool correlation realized by the
internal Vulnerability Taxonomy provided a common frame of reference for the numerous
data formats of external tools.

FuzzyFusion™ technology supports vulnerability assessment for nodes within the network

using both the single network representation and the data correlation technologies within
the IDEA repository.

Security Assessment Tools Data Collection Integration 8& Analysis

Fachase
AFCERTS,

. * Design Analysis
Security » Life-Cycle System
Requn;tercrents Security Analysis

Figure 1.2-1 — Early view of FuzzyFusion™

IDEA supported a Blue Ribbon panel of experts who were selected to provide consultation.
During its third meeting, with AFRL representation, it was decided to research additional
concepts and mechanisms for an enhanced FuzzyFusion™ component. This component
would be similar in function to that existing within Harris's commercial STAT® Analyzer
product — a spin-off of the Network Vulnerability Tool effort. At the time, it was noted that
STAT® Analyzer's FuzzyFusion™ component was still under construction and that the
IDEA effort would complement that component with additional research at higher levels of
abstraction in the data fusion model.

The FuzzyFusion™ black-box concept presented at the panel meeting (Figure 1.2-2)
shows a naive, yet possible, implementation of Fuzzy Fusion™ where the FuzzyFusion™
black box accepts data supporting the four defined levels of information data fusion.

I !
=

4 meFusion""Blachox .

vul nerabl lity
Taxonom
| Poss | -

Figure 1.2-2 - The FuzzyFusion™ component supporting higher levels of data fusion

After IDEA's research direction was established we began exploring in more detail the
various levels of data fusion (see Figure 1.2-3) and how they could be supported. To
address this we brainstormed how the FuzzyFusion™ component would be used and how
it could support each of the four levels of data fusion (see Figure 1.2-3).
« Level 1 - Node Data Refinement
— Uses mapped taxonomies
* Level 2 - Network Segment Refinerment
— Adds an additional taxonomy that describes node
(point) qualities
* Level 3 - Risk Refinement

— Uses DPL-f and Threat Knowledge and Cost
databases

» Level 4 - System Refinement

— Uses DPL-f and Countermeasure, Component
and Cost databases

Figure 1.2-3 — Data Fusion levels as presented in the 3™ Blue-Ribbon session

The result of our investigation into the levels of data fusion and how each level is supported
by the FuzzyFusion™ component were the initial driving factors in our component
development effort.

The final version of the FuzzyFusion™ component is guided by the research into data
fusion levels as well as how the component supports potential use in a real-world
application environment (as it is used in STAT® Analyzer or was to be used in the scope of
the initial IDEA effort). This helped define strict boundaries between what data processing
functionality the component contains and what data processing functionality users of the
component are to contain. For example, STAT® Analyzer manages data filters and
converters to convert vuinerability assessment tools into a common data format for use by
FuzzyFusion™. IDEA’s FuzzyFusion™ component is similar in that vulnerability mapping
and data manipulation are performed external to the component. It is not the
FuzzyFusion™ component’s job to map tool vuinerability information into the internal
Vulnerability Taxonomy. Rather, it is Fuzzy Fusion’s™ job to correlate information into more
comprehensible results.

Figure 1.2-4 - FuzzyFusion™ as a component technology

The re-emphasis of IDEA led to research into and development of a stand-alone
FuzzyFusion™ component. The FuzzyFusion™ component is a tightly-focused module that
accepts vulnerability information and produces a measure of vulnerability. Being a
component, as opposed to a complete application, the FuzzyFusion™ component is more

5

flexible than a complete application in that its interface may be used in ways not enforced
by a component. It is not possible for FuzzyFusion™ to constrain how it will be used by
external, currently-non-existent applications. Also, as a component, it must rely on an
external application (Figure 1.2-4) to prepare the vulnerability information. This document
addresses these issues in further detail in Section 4.2. Both documentation for the Fuzzy
Fusion™ and guidelines as to how the component is intended to be used are discussed.

1.3 FuzzyFusion™ Results

Early in this effort, it was unclear as to exactly what results were to be returned from the
FuzzyFusion™ component. That the result of the FuzzyFusion™ process produces a
measure of the vulnerability of the machine was obvious. However, it was initially unclear
as to how to express that measure.

Two options were available to us at the time:
1) Return a single final-value representing the vulnerability measure of the node,

2) Return a list of final-values that may be used to calculate a final vulnerability
measure, or further support an external vulnerability assessment tool.

We chose the second option as more viable because it would allow us to better analyze the
results of FuzzyFusion™.

The FuzzyFusion™ component returns three types of information:

e A set of vulnerability categories with some related data. These are the
intermediate results of the FuzzyFusion™ process.

¢ The result of fuzzy membership analysis across the vulnerability categories.
These are the final results of the FuzzyFusion™ process. And

¢ A final value for the node derived from the fuzzy membership analysis. This
value is calculated directly from the fuzzy membership analysis results.

Section 4.2 discusses the results produced by the FuzzyFusion™ component.

2 Document Overview

Section 3 contains reference documents.

Section 4 contains the program summary covering the levels of data fusion, what
the FuzzyFusion™ component is and does, analysis of results, and contains the
prototype information.

Section 5 presents the conclusions of our research.
Section 6 contains possible future work for FuzzyFusion™ technology.

Appendix A contains database tables and database information used on
FuzzyFusion™.

Appendix B contains XML background and information.

Appendix C is the original IDEA architecture document.

3 Reference Documents

Network Vulnerability Visualization Architecture (NVVA) Proposal — Volume |,
Technical, Harris Corporation, Melbourne, FL, 1996.

Tallet, Joseph, Ronda Henning and Kevin Fox, “IDEA: An Information
Superstructure”, Proceedings of the 2" DARPA Information Survivability
Conference and Exposition (DISCEX II), June 2001.

Henning, Ronda, Margaret Knepper, and Kevin Fox, “Information Fusion Meta-

Language Requirements”, IEEE Systems, Man, and Cybernetics Information
Assurance Workshop, June 2001.

Vulnerability Analysis, Detection, and Reduction (VADR) Proposal — Volume 1,
Technical, Harris Corporation, Melbourne, FL, 1998.

4 Program Summary

4.1 Levels of Data Fusion

To date, traditional intelligence data fusion process modeling techniques have not been
applied to the information assurance/operations disciplines. However, several calls for
research have noted the problems of integrating disparate data sources into a common
operational picture or situational assessment. To the best of our knowledge,
interdisciplinary research between the data fusion community and the information
assurance community has not been previously undertaken. The adaptation of traditional
data fusion techniques to the information assurance correlation problem offers a potentially
high payoff in the field of system vulnerability analysis.

The previous NVT effort developed the data fusion model presented in Table 4.1-1. The
research resuited in a four-stage model of vulnerability fusion. This model is designed to
reflect the global nature of a large enterprise, the increased dependence on inter-networks
of information, and the vulnerabilities associated with individual network segments and
devices. The model has been successfully applied to static vulnerability analysis, and has

been integrated with current vulnerability assessment technologies for vuinerability
identification and correlation.

Table 4.1-1 — The levels and purposes of the Intelligence Data Fusion process

DATA FUSION LEVEL

DESCRIPTION

Object Refinement

¢ Transforms data into consistent frame of reference

* Refines and extends, in time, estimates of object position, kinematics or
attributes

e Assigns data to objects to allow application of estimation process

e Refines the estimation of object identity

Situation Refinement

® Develops description of current relationships among objects and events in
the context of the environment

® A symbolic, reasoning process by which distributions of fixed and tracked
entities and events and activities are associated with environmental and
performance data in the context of an operational problem

Threat Refinement

e Projects the current “situation” into the future and draws inferences about
threats, vulnerabilities and opportunities for operations

Process Refinement

o Monitors process performance to provide information for real-time control
and long-term improvement

o Identifies what information is needed to improve the multi-level fusion
product

o Determines the source specific data requirements to collect required
information
o Allocates and directs the sources to achieve mission goals

Level 1 - Object Refinement

The FuzzyFusion™ component assesses the risk for each node in the network. It is
assumed that client applications of the FuzzyFusion™ component send vulnerability
information relating to a single network node for further correlation. Used in this manner,
the FuzzyFusion™ component returns a vulnerability assessment of a single node. This is
the context in which IDEA’s FuzzyFusion™ component was designed, namely, to facilitate

the development of single-node operational assessment information. The object refinement
level of data fusion is demonstrated in the IDEA Fuzzy Fusion™ prototype.

Level 2 - Situation Refinement

For level 2 data fusion, some FuzzyFusion™ components within a network are configured
to be dependent upon others. This configuration of component dependencies feature was
beyond the scope of the IDEA FuzzyFusion™ component. However, its results could be
fully conveyed through the return of a final vulnerability assessment: Data, User, or System.
This result is forwarded to dependents of the FuzzyFusion™ component. Each dependent
updates its own final vulnerability assessment in response to the new information.

After updating its final vulnerability assessment, the dependents will send their updated
information on to their own dependents.

Level 3 - Threat Refinement

The FuzzyFusion™ component supports threat refinement by allowing its clients to provide
an Opportunity For Exploitation' (OFE) with each vulnerability. The OFE is used to identify
opportunistic exploitation paths through the network. The ability to predict the paths of
nodes that an intruder will follow during an attack is a level 3 data fusion issue.

For level 3 data fusion, a centralized application (IA server) collects the FuzzyFusion™
vulnerability measures from each node. The IA server then identifies, based on the value of
the OFEs, the possible intrusion paths through the network.

Another issue attributed to level 3 data fusion is the refinement of the exposures and their
potential for harm within the network. Nodes containing sensitive information (company
private, etc.) are ranked as goals for an attack. Were an attacker to gain access to the
node, vital corporate information may be compromised. Once these nodes are identified,
the IA server uses the information as it determines the exploitation paths through the
network.

Level 4 - Process Refinement

Level 4 data fusion builds on the previous 3 levels of data fusion. After the assessment of
exploitation paths through a network, a server application would examine the vulnerabilities
for each node and generate a report specifying how to address the vulnerabilities. For level
4, causal information about the results of the FuzzyFusion™ analysis would be necessary.
This kind of capability was discussed at the fourth Blue Ribbon panel meeting and a
possible solution is provided in Section 6.3.

Data Fusion — An Example

The next section models a distributed network vulnerability application using the technology
of FuzzyFusion™ in support of the four data fusion levels.

The remainder of this section discusses the four levels of data fusion and how the
FuzzyFusion™ component supports each.

' The term OFE, a suggestion of Dr. Jim Bezdek, came about during the fourth Blue Ribbon Panel,
during a discussion of terminology. Probability/Possibility of exploitation had domain implications that
were not intended in this context.

10

4.2 Operational Concept for a FuzzyFusion™ Component

During the initial restructuring of the IDEA program, we investigated the various levels of
data fusion and how they are supported by a FuzzyFusion™ component.

This section models a real-world application of the data fusion and FuzzyFusion™

technologies and shows how they are used to support real-time network vulnerability
analysis.

4.2.1 Introduction

To increase the FuzzyFusion™ component'’s capacity for interfacing to other applications,
we chose to use the eXtensible Markup Language (XML) for our interface. XML allowed us

to define how the data would pass from the host application to our component (Figure
4.2-1).

Figure 4.2-1 — XML is the data transport mechanism for the FuzzyFusion™ Component

XML allowed us to reduce our efforts in passing the data to our FuzzyFusion™ component
from the host application. For us, the host application was the testing application. In a real-
world application, the host would be the application that collects vulnerability information
and passes it to a FuzzyFusion™ component client.

Figure 4.2-2 - The host application uses a vulnerability scanner to generate data for the
FuzzyFusion™ Component

Another potential follow-on concept to XML is supporting vulnerability analysis in a
distributed system. Each network node contains a vulnerability scanner and a
FuzzyFusion™ client (Figure 4.2-2). As a client, the FuzzyFusion™ component is small,
fast and readily adaptable to a distributed environment.

11

This section discusses how we view real-time vulnerability analysis of a network using
FuzzyFusion™ component clients.

4.2.2 Distributed Real-Time Vulnerability Measurement

Consider a network of nodes where each node contains a small vulnerability scanner
whose job is to periodically assess the vulnerability of its host. In the same manner that a
virus scanner resides on individual networked machines, this lightweight-process also
resides on each machine in a network. As vulnerabilities are detected, they are processed
by the host application (acting as a Vulnerability Assessor) and a vulnerability
measurement is assigned to the node. As this assessment changes, reflecting the node
becoming more or less vulnerable, the information is sent to a network assessment tool.
The network assessment tool notes the updated node information and re-assesses the
vulnerability across the network.

Being a server-side application, the network assessment tool is capable of receiving and
processing the vulnerability status of all nodes. The tool determines which nodes in the
network are most vulnerable and reports its assessment to a network administrator. The
network administrator analyzes the vulnerability information returned from the vulnerability
scanning tools and selects vulnerabilities to address immediately.

423 Level 1 FuzzyFusion™ - What is the vulnerability of each node?

Although the FuzzyFusion™ component can support level 2 and 3 data fusion concepts,
with inroads into level 4 data fusion, our research emphasized design goals and
conceptually prototyped the level 1 component aspects. This allowed us to have early
success with the fusion concepts, and provided a framework for further experimentation
with higher levels of data fusion.

Figure 4.2-3 - Distributed Real-Time Vulnerability Assessment Application

The level 1 FuzzyFusion™ component developed on IDEA is a small client-side component
that processes a node’s vulnerability information and generates a measurement of
vulnerability. The measurement of vulnerability is called the Fuzzy Vulnerability Indicator
(FVI).

The following section discusses the importance of a level 1 FuzzyFusion™ component in
network vulnerability assessment.

12

4.2.3.1 Level 1 Scenario

Suppose each node in a computer network contains an application continually scanning the
host for vulnerabilities. This application, the Vulnerability Assessor shown in Figure 4.2-3,

formats the vulnerabilities returned from the Vuinerability Scanner and forwards them to its
FuzzyFusion™ client.

After the FuzzyFusion™ client performs an analysis of the node’s vulnerabilities it
generates an FVI and returns it to the Vulinerability Assessor. It is the task of the
Vulnerability Assessor to decide how to address the FVI value. If the FVI value is the same

as previous values, or after applying some tolerance calculations is found to be the same,
the Vulnerability Assessor may do nothing.

If the FVI value is significantly different from previous FVis the Vulnerability Assessor may

be programmed to send the new information to another application or a network
administrator.

This is the scope of level 1 data fusion analysis: Generate an FVI for a node and notify a
network administrator about it when it exceeds a predefined threshold value.

Figure 4.2-4 - Network Configuration

Figure 4.2-4 depicts one possible view a network administrator may create as a result of
notification from a Vulnerability Assessor. In the figure, Node 12 is found to have a
vulnerability distinguishing it from the other nodes. For level 1 data fusion it is the
responsibility of the network administrator to analyze and respond to the information.

4.2.4 Level 2 FuzzyFusion™ - How do vulnerabilities in one node affect other
nodes?

To address level 2 FuzzyFusion™, the concept of node-proximity is introduced. As
discussed in the Blue Ribbon panel, there are several methods of determining nearness

across nodes. One method takes into account the topology of the network. Another takes
into account the exploitations or strengths available on neighboring nodes.

Figure 4.2-5 — Vulnerability Assessors linked together

Level 2 FuzzyFusion™ allows the Vulnerability Assessor to be configured as dependent on
other Vulinerability Assessors. '

4.2.41 Scenario

In Figure 4.2-5, Vulnerability Assessors on nodes 42, 52, and 62 are dependent on
Vulnerability Assessor node 12. This means that, in this network of four nodes, three nodes
depend on one node to remain secure. For an intruder to gain access to nodes 42, 52, or
62, they would have to exploit a vulnerability within node 11. This network topology is a
simple client-server architecture. The client nodes (42, 52, and 62) are accessible through
the server (12).

Given this topology, a network administrator would configure the Vulnerability Assessor on
node 12 to forward its assessment value to nodes 42, 52, and 62. If node 12 became
vulnerable, it would increase the level of exposure to nodes 42, 52, and 62.

14

Figure 4.2-6 — Exploitation path through a network

Figure 4.2-6 shows a possible vuinerability path through a network. If an intruder gains
access to node 12, nodes 42, 52, and 62 become potential targets for attack.

In this scenario, the Vulnerability Assessor on node 1 would forward changes of its FVI to
the Vulnerability Assessors on the three dependent nodes. Each dependent node would
then re-assess their FVI possibly raising flags to the network administrator.

B e %
YUY Y EE T

Subnet 1

Figure 4.2-7 — Dependent node, Node 52 raises its vulnerability level

Figure 4.2-7 depicts one possible view a network administrator may have as a resuilt of the
increase in exposure to Node 12. The increase caused an increase in Node 52. Nodes 42
and 62, although dependent upon Node 12, are not impacted by the change. The network
administrator would ascertain the problem with Node 12 and fix it. After fixing Node 12, the
Vulnerability Assessor on Node 52 would lower its exposure value.

Compare this with level 1 FuzzyFusion™. In Figure 4.2-4 the information to the network
administrator would be simply that Node 12 has become significantly vulnerable to attack.
The importance of that vuinerability, determined by dependents of the node, is not
provided. The network administrator would not realize that when Node 12 became
vulnerable to attack, nodes 42, 52, and 62 also became vulnerable. Level 2 FuzzyFusion™
information is useful in assessing the extent of the vulnerability across the network’s nodes.

This scenario shows how a network of dependent nodes may be managed using level 2
FuzzyFusion™ technology. As exposures are identified, nodes dependent on the strengths
of other nodes for protection from external intruders would automatically re-assess their
level of exposure.

4.2.5 Level 3 FuzzyFusion™ - How do | get to a vulnerable node that allows me
access to critical data?

Level 3 FuzzyFusion™ incorporates the technology of level 2 FuzzyFusion™ by defining a
single collection place for all level 1 and level 2 values. It also adds the capability of
configuring a node’s value to the company. The use of this value (the dollar amount lost by
the company if the node is compromised) is discussed later in this section.

Level 2 FuzzyFusion™ identifies paths from a vulnerable node to neighboring computers,
revealing a weak point that, if exploited, allows an intruder access to other machines. Level
3 performs the same function with the additional capability of pointing out nodes of
maximum impact to companies if successfully attacked.

(/11T T

Figure 4.2-8 — Key node on network becomes more vulnerable

Within our network shown in Figure 4.2-8, the Vulnerability Assessor on node 12 has
identified an exposure and updated its FVI. After sending the new FVI to the dependent
nodes (42, 52, and 62) the Vulnerability Assessor on node 52, after re-evaluating its FVI
has raised its leve! of exposure.

For leve! 3 FuzzyFusion™, each Vulnerability Assessor sends its information to a server-
application; a Network Assessor application. The Network Assessor collects FVI results
from each node in the network. The capabilities of the Network Assessor would be to build
a map of the network showing vulnerable nodes as well as nodes containing key corporate
assets.

16

Moving from level 2 to level 3 FuzzyFusion™ is more difficult than moving from level 1 to
level 2. The Vulnerability Assessor would have a minor change — send status to server. In
essence, the Network Assessor would become a dependent of the Vulnerability Assessor.
The Network Assessor is not a simple component. It is capable of capturing potentially

large amounts of FVI information, assessing, and rendering the information for a network
administrator.

The Network Assessor would have to automatically identify paths of exploitation through
the network. This information is strongly similar to that discussed during the third Blue
Ribbon Panel where Dr. Blaine Burnham discussed the topic of node proximity.

Level 3 FuzzyFusion™ must determine proximity relationships between nodes. There are
two promising approaches to generating this information: fault tree analysis and cognitive
maps. Fault tree analysis is a commonly used analysis method for determining

combinations of various methods of hardware and software failure. Cognitive maps are a
useful means of analyzing causal knowledge.

Using Fault-Tree Analysis or Cognitive Maps, the paths are identified and other information
may be divined:

o Types of exploitations necessary to overcome to reach each vuinerabie node,

o Effort to overcome the vulnerabilities across the path — use proximity information,
e Probable attack patterns - Include Opportunities For Exploitation information,

o Path Variations — Analyze different approaches to the same goal,

o Selects Optimal Attack Path — Identify the most opportunistic path to the goal.

This network analysis need not limit itself to simply identifying network-external candidate
attacks. Internal-network attacks are just as, if not more, important for vulnerable paths. It is
not sufficient to say that internal paths to a vuinerable system are a subset of external
paths. Internal paths may start at locations the external path may not reach. However, there
is probably a set of nodes — or a single subnet — that can be identified for which all others

are called external. Then, analysis breaks down into an identification of the path through
the subnet plus the local-external path.

17

Figure 4.2-9 - External to Internal attack path to a key node

Within our network, Node 12 has visibility into three nodes (42, 52, 62) one of which, Node
52, contains critical information. Although Node 52 itself may have no easily exploitable
vulnerabilities it may become more prone to attack once vulnerabilities on Node 12 are
exploited. The network view (Figure 4.2-9) generated by the Network Assessor application
shows the network administrator an opportunistic path to Node 52.

g - 2 1
putovRguLaY J

Subnet 1

Node 7

Figure 4.2-10 — Internal to Internal attack path to key node

Figure 4.2-10 shows a possible representation for an internal attack to the vulnerable node.

18

With this information, the network administrator is able to quickly identify and fix exploits on
key network nodes.

4.2.6 Level 4 FuzzyFusion™ - How do | increase the level of difficulty of following
a path to the critical node?

Level 4 of FuzzyFusion™ continues where Level 3 FuzzyFusion™ stopped. Level 3 leaves
the decision to the network administrator for selection of optimal vulnerability fixes. Level 4
FuzzyFusion™ adds the capability to the FuzzyFusion™ component to be able to

determine which vulnerabilities led to the FV! and return them to the Vulnerability Assessor.

The Vulnerability Assessor would, in turn, send them to the Network Assessor for collection
and processing.

The Network Assessor, after processing the information, would direct the Vulnerability
Assessors to, where possible, automatically fix the vulnerabilities. Support for this feature
would be required of COTS vuinerability assessment tools. For example, STAT® Scanner
has an auto-fix capability for some vulnerabilities. For vuinerabilities without auto-fixes, the
Network Assessor would kick off a workflow to have them manually fixed.

4.2.7 Summary

The level 1 FuzzyFusion™ component prototyped on IDEA is a small component in a larger
network vulnerability application. Its support for level 1 FuzzyFusion™ is the conceptual
starting point for a complete real-time vulnerability assessment application. The impacts to -
the FuzzyFusion™ component when moving up in levels of data fusion abstraction are

minimal. Most of the impacts associated with each level are external to the FuzzyFusion™
component. :

Level 2 requires the FuzzyFusion™ component to use an externally provided starting
value. This interface, although not implemented, is provided by the component.

Level 4 requires the FuzzyFusion™ component to generate information pertaining to how
the FVI was impacted by vulnerabilities. Details for this simple modification are discussed in
Section 6.3.

19

4.3 Technical Approach

The approach undertaken for this effort is to provide a measure of vulnerability for a single
node. This measure is the result of analyzing the vulnerability, level of trust or confidence in
the vulnerability (based on a security engineer's assessment of the tool's capabilities), and
Opportunity For Exploitation.

For this effort, this measure is a multi-faceted value containing FuzzyFusion™’s
intermediate conditions as well as an overall assessment of the node’s vulnerability.

Our objective is to apply FuzzyFusion™ to determine the vulnerability of a single node. The
vulnerability data for the FuzzyFusion™ component is collected externally by analysis tools.
The FuzzyFusion™ component accepts this data in the IDEA Vulnerabilities and Exposures
(IVE) format. This data format encompasses two distinct data formats: the Common
Vulnerabilities and Exposures (CVE) format and an IDEA-specific data format termed the
IDEA Analysis Taxonomy (IAT) (see Figure 4.3-1).

IVE

FuzzyFusion™
Component

Figure 4.3-1 — Data for the FuzzyFusion™ Component

Information about CVE may be found on the http://cve.mitre.org/ website. The IVE format is
a simple internal data format used to reason about external vulnerability scanner results.

This section describes our approach to accepting vulnerabilities and related information
and producing a measure of the node’s overall vulnerability.

4.3.1 The FuzzyFusion™ component database

The FuzzyFusion™ component accepts vuinerability information in either CVE or IVE
format. Internally, both CVE and IVE information is mapped to the IAT format.

20

Table 7.1-1 shows the enumeration for the IVE’s and their descriptions. CVEs are mapped
to these by the users of the FuzzyFusion™ component. Users may also pass vuinerabilities
using the IVE identifier, also shown in the table.

Within the FuzzyFusion™ component database there is stored a repository of a-priori
knowledge. This knowledge describes the state changes which the FuzzyFusion™ engine

undergoes during its calculations. The data is an accumulation of knowledge from the NVT,
STAT® Analyzer and STAT® Scanner programs.

Section 7.3 shows the rulebase for the FuzzyFusion™ engine. The format of the table is
shown below. '

Table 4.3-1 - IAT Mapped to Pre and Post Conditions

IAT-ID PreCondition PostCondition

The IAT-ID — IDEA Analysis Taxonomy (IAT) are the building blocks of the vulnerability
analysis. Vulnerability analysis tools identify vulnerability information utilizing system
configuration and system status information. Databases of known vuinerabilities are
referenced and a vulnerability assessment is produced. These vulnerability assessments
are lists of specific system vulnerabilities. It is these vulnerabilities that are translated into

IVE information by FuzzyFusion™ component users prior to sending them to the
component.

The PreCondition is used as a starting point for the FuzzyFusion™ analysis. The
PostCondition is an intermediate condition for the FuzzyFusion™ analysis.

IDEA uses a simple pre-condition of Start and a more complex post-condition. The post-
conditions are categories of vulnerabilities that each IAT is mapped to.

There are 16 categories of vulnerabilities for FuzzyFusion™. They are listed in Table 6.2-
1.

4.3.2 Client vulnerability mapping guidelines

Each tool vulnerability contains a one or more qualities which we call IATs. IATs are types
of vulnerability. As such they may be combined to form the characteristics of a single tool
vulnerability. Generally, however, tool vulnerabilities are mapped to the single, most
destructive exploitation involved. For example, vuinerabilities which lead to administrative
or root access to a node rank higher than vulnerabilities leading to user-level access.
Vulnerabilities leading to user-level node access are ranked higher than vulnerabilities
leading to access to network traffic.

IVE
IVE

Vulnerability

Vulnerability Vulnerability
List Vulnerability
Vulnerability

IVE
IVE

IVE
IVE
IVE

ZiRN

IVE

Figure 4.3-2 — Mapping tool vulnerabilities to IVEs

Vulnerability tools produce lists of vulnerabilities for a give node. Each vulnerability must be
mapped to an IVE. The following sections discuss, in greater detail, this vulnerability
mapping process.

4.3.2.1 Example of mapping a tool-generated vulnerability to an IAT

STAT® Scanner performs an analysis of a computer on a network: known as a node. It
identifies a set of vulnerabilities for it based upon an internal database. This set of
vulnerabilities has been mapped, by the STAT® Analyzer team to a vulnerability taxonomy.

This example shows how a STAT® Scanner vulnerability is mapped to the FuzzyFusion™
component’s IVE.

STAT® Scanner’s vulnerability number 885 in Table 4.3-2 describes one NT vulnerability
leading to denial of service.

Table 4.3-2 - STAT® Scanner vulnerability description

Vuin ID Description

885 An administrative script in Internet Information Server (11S) does not
correctly handle a missing argument. This could cause the script to go
into an infinite loop, consuming all CPU resources on the server. The
permissions on some of the |IS tools could allow web site visitors to use
these tools to cause a denial of service. For more information see
Microsoft Security Bulletin MS00-044 and Knowledge Base Article
Q267559.

This vuinerability may result in a Denial of Service for the node and is therefore mapped to
IVE-270.

Table 4.3-3 - IVE and description

IVEID Description

IVE-270 Protect against Denial of Service

Some vulnerabilities may contain more than one vulnerability characteristic. CVE-1999-
0898 can allow a buffer overflow which may be exploited for privilege elevation. In most
instances a single CVE is mapped to the vulnerability with the greatest potential for harm.
This is a guideline used in all but a couple of cases on IDEA.

4.3.2.2 Example mapping a CVE vulnerability to an IAT

As mentioned before, our guideline is to map tool-generated vulnerabilities to the most
destructive vulnerability type, i.e. Administrator access or Privilege Elevation. CVEs,
however, may be mapped to multiple vulnerability types if the CVE is sufficiently complex
enough to warrant a muitiple mapping.

For this effort we almost always avoided mapping CVEs to multiple IVEs unless the
vulnerability tool mapped multiple vulnerabilities to a single CVE. For these cases, we
mapped the tool identified CVEs to multiple IVEs using the tool’s vulnerability database.

For example, STAT® Scanner’s vulnerability database maps CVE-1999-898 to two
individual vulnerabilities. We, in turn, mapped the CVE to two IVEs.

22

Table 4.3-4 - STAT® Scanner vulnerability information

STAT® Scanner’s Vuinerability ID CVEID
684 CVE-1999-0898
685 CVE-1999-0898

This project makes use of the STAT® Analyzer database information for mapping tool
vulnerabilities to IVEs. STAT® Analyzer maps STAT® Scanner’s vulnerabilities, 684 and
685 to a vulnerability taxonomy which we have numbered. IVE-295 and IVE-130 are the
corresponding numbers. Table 4.3-5 shows the description for the CVE and Table 4.3-6
shows the description for the two IVEs that are mapped to the CVE.

Table 4.3-5 - CVE Description

CVEID Description

CVE-1999-0898 | Buffer overflows in Windows NT 4.0 print spooler allow remote

attackers to gain privileges or cause a denial of service via a
malformed spooler request.

Table 4.3-6 ~ IVE Description

IVEID Description
IVE-295 No Buffer Overflow
IVE-130 No privilege elevation without 1+A

Mapping tool vulnerabilities to FuzzyFusion™ IVEs is not performed within the
FuzzyFusion™ component. Users of the component must map vulnerability information
prior to calling FuzzyFusion™. The Vulnerability Assessor shown back in Figure 4.2-3 is an
application that would perform the vulnerability scanner to FuzzyFusion™ component
mapping. STAT® Analyzer is an example of a tool that performs this mapping.

Table 4.3-7 — Mapping Summary

CVEID STAT® Scanner Vulnerability ID | IVEID

CVE-1999-0898 684 IVE-295
685 : IVE-130

None Associated 885 IVE-270

Table 4.3-7 shows the tool vulnerability to IVE mapping. All of STAT® Scanner’s
vulnerabilities are mapped to IVEs. For those STAT® Scanner vulnerabilities that have a
corresponding CVE, the CVE is mapped to the IVEs also. Except for the CVE-to-IVE

mapping, the STAT® Scanner vuinerability to IVE mapping is performed by the STAT®
Analyzer team.

Users of the FuzzyFusion™ component will use a similar mapping process in order to send
the FuzzyFusion™ component vulnerability information.

Table 7.1-1 contains the list of IVE values available to users of the FuzzyFusion™
component.

23

433

The FuzzyFusion™ component

The FuzzyFusion™ component exports a well-defined interface that supports the following

capabil
v
v
v
v
v

ities:

Storage of vulnerability information

Relating each vulnerability to a tool

Relating Opportunities For Exploitation (OFE) information to a vulnerability
Relating Trust to a vulnerability

Generation of results for a single or set of tools

The component accepts its data in XML format (see Appendix D) and returns results in

XML fo

rmat. XML was chosen for its data-independence.

In addition to vulnerability information, clients may pass in three vulnerability attributes.

1)

2)

3)

Tool identifier for the tool generating the vulnerability — this is a numeric

Vulnerability Assessor defined identifier that is used by FuzzyFusion™ to group the
vulnerability information.

Trust in the vulnerability — this is a human-generated or Vulnerability Assessor-

generated assessment of the chance that the vulnerability actually exists (Range is
0..1).

Opportunity For Exploitation (OFE) — this is a human-generated or Vulnerability
Assessor-generated value depicting the chance that the nature of the vulnerability is
such that it will be exploited (Range is 0..1).

These three attributes, along with the mapped vulnerability are used by the FuzzyFusion™
component to generate a vulnerability assessment for the node.

The vulnerability assessment contains the following information.

The set of intermediate conditions along with their Grade and OFE - shows the
vulnerability categories, the approximate number of vulnerability hits in each
category, and the maximum OFE across the vulnerabilities leading to the category.

The set of end conditions along with their FuzzyFusion™ value and OFE —
(Data_End, User_End, System_End),

A final concluding value for the node, and

The maximum end condition for the node — to be used for Level 2 FuzzyFusion™

Table 4.3-8 — Sample FuzzyFusion™ component output (after translated from XML)

Account 16} 1
Administrator 2 1
Audit 14 1
Backdoor 0 0
ICompromised 0 0

ata 6 1

24

Encryption 2 1
File 12 1
Hardware 4 1
Hijack 37 1
Network 3 1
Password 12 1
Privilege 0 0
Process 18 1
System 13 1
TBI 1 1
Data_End ‘_ 1
User_End 1
System_End 1
END 0
ystem :

The gray boxes in Table 4.3-8 are not used by the FuzzyFusion™ component.

The values of Data_End, User_End, and System_End are comparative values showing the
chance that an attacker may exploit vulnerabilities leading to those results.

Data_End implies that the attacker will only be able to exploit vulnerabilities allowing them
access to network traffic.

User_End implies that the attacker will be able to exploit vulnerabilities allowing them
access to user accounts or user account information.

System_End implies that the attacker will be able to exploit vulnerabilities allowing them
access to administrative access to the node.

The End conclusion is a representation of the strength of Data_End, User_End, and
System_End.

The final value of the table is the FVI for the node. This is the FVI discussed in Section

4.2 .4 detailing level 2 FuzzyFusion™. Section 4.3.5 goes into detail on the FuzzyFusion™
algorithm.

The next section describes the XML format of the inputs and outputs to the FuzzyFusion™
component.
4.3.4 Data input requirements for the component

The FuzzyFusion™ component accepts XML-compatible data. The tag hierarchy for the
XML data is shown in Table 4.3-9.

25

Table 4.3-9 — Tag Hierarchy for IDEA’s XML data

IDEAINPUT
IMPORT
FILENAME
EXPORT
FILENAME
STARTCONDITION
CONDITION
TOOLLIST
TOOLID
POLICY
IAT
VULNERABILITY
IVE
TRUST
OFE
TOOL

IDEARESULTS
RESULT
CONDITION
GRADE
OFE
ENDCONDITION

The XML tag IDEAINPUT is used to denote input for idea. Sub-tags are used to provide
additional data.

This section describes the format and use of the XML inputs and resuits of the
FuzzyFusion™ component.

IMPORT - this tag provides the name of the file containing XML information for the
component. :

EXPORT - this tag provides the name of the file for the component’s result information.

STARTCONDITION - this tag supports level 2 FuzzyFusion™. If the local node is
dependent on a remote node, the end condition of the remote node is used as the start
condition of the component. STARTCONDITION is the mechanism by which the
component’s start condition is externally modified. Possible values for STARTCONDITION
are: Data, User, or System.

TOOLLIST - this tag is used to direct the component as to which tool’s vulnerabilities to run
the FuzzyFusion™ process on.

POLICY - this tag is used to provide policy information to the component. Policy
information is provided to the component in IAT-compatible format.

VULNERABILITY - this tag is used to provide vulnerability information to the component.
Each vulnerability is identified by its IVE attribute. TRUST is used to document the level of
trust the client has with the existence of the vulnerability. OFE is the possibility of
exploitation for the vulnerability and TOOL is a numeric alias for the name of the resource
that discovered the vulnerability.

26

The FuzzyFusion™ component accepts these inputs and generates a vulnerability
measurement. The results are returned in an XML file with the following tags.

IDEARESULTS - this tag denotes the output from FuzzyFusion™.

RESULTS — This tag is used for the condition-based results list from the component.
CONDITION names the resulting condition for which the values of GRADE and OFE apply.

ENDCONDITION -~ This tag is used to provide the final measure, or end condition of the
FuzzyFusion™ operation. For level 2 FuzzyFusion™ the end condition is sent to dependent

nodes by the client.
4.3.5 Processing the data

This section discusses the FuzzyFusion™ algorithm implemented in IDEA. We review the
following:

+ Definitions

* Inputs and.outputs

* Processing overview
» Algorithm details

+ The divergence of IDEA FuzzyFusion™ from STAT® Analyzer FuzzyFusion™,

4.3.5.1 Definitions

We define the following terms, which we use in the following discussion of the algorithm.
Policy list is a list of IVEs with which we are concerned.

Tool List is a list of Tools producing Hits with which we are concerned.

Hit is an IVE found to exist by a specific Tool. A Hit has an associated Tool, Trust and
Possibility.

Pruned Hit List is a list of those IVEs included in the current Policy and whose associated
tool is on the Tool list.

Pruned Hit List= ({Hits} ~we {Policy}) nrooL {Tool List} J

Figure 4.3-3 — Pruning formula
Intermediate Condition is one of 16 Conditions shown in Table 7.2-1.
Rule is a function which maps one IVE to one Intermediate Condition.

| Intermediate Condition = Rule; (IVE)

Figure 4.3-4 — Intermediate Condition Formula
In the current implementation, there can be up to 16 rules for each IVE.

Relevant Rule List is a list of rules where the IVE to which the rule is applied is an element
of the Pruned Hit list.

27

Reachable Intermediate Condition is one of the Intermediate Conditions, when a
Relevant Rule exists which produces that Condition.

4.3.5.2 IDEA FuzzyFusion™ processing inputs

FuzzyFusion™ requires a Pruned Hit List and a Relevant Rule List as inputs for
processing. In the current implementation, the FuzzyFusion API is responsible for supplying
those inputs to the FuzzyFusion engine. As discussed below, the STAT® Analyzer
FuzzyFusion™ required a start condition, but that artifact was not used in the IDEA
FuzzyFusion™ algorithm.

 Start Condition(s)

Figure 4.3-5 — Diagram of FuzzyFusion™ inputs.

4.3.5.3 IDEA FuzzyFusion™ processing outputs

FuzzyFusion™ produces three types of result set outputs. One set provides information for
each of the Intermediate Conditions; another set provides information for three summary
conditions, and the last set provides a single summarizing value for the node.

28

Figure 4.3-6 - Diagram of FuzzyFusion™ outputs

4.3.5.4 IDEA FuzzyFusion™ processing overview

The IDEA FuzzyFusion™ algorithm can be decomposed into nine steps.

o > 0D =

List reachable Intermediate Conditions from Relevant Rules.
Calculate Numerié Grade for each reachable Intermediate Condition.
Calculate Belief for each reachable Intermediate Condition.
Calculate maximum OFE for each reachable Intermediate Condition.

Apply fuzzy set membership functions of Intermediate Conditions to generate fuzzy
End Conditions.

6. Apply to Belief of the Intermediate Conditions.

7. De-fuzzify the fuzzy sets to obtain a value for each End Condition.
8. Apply fuzzy set characteristic functions to Intermediate Conditions’ OFEs to

generate maximum OFEs.

Calculate a Node Value using linearly weighted End Conditions’ values and OFEs.

29

4.3.5.5 Algorithm details

4.3.5.5.1 STEP 1

The first step is to apply the Relevant Rules to the Pruned Hits List so as to obtain the
reachable Intermediate Conditions. Conceptually, this step applies the knowledge base
created by security engineers to the tool results. Because the tool results have been
previously pruned by application of policy, this step is efficient.

43552 STEP 2

The next step is to calculate the Numeric Grade for each reachable Intermediate Condition.
This involves two sub-steps. Sub-step A requires calculation of the Trust Tg; associated with
Rule; Because there may be Hits produced from different tools, there may be various
Trusts of those Hits. Sub-step A requires obtaining the mean of those trusts.

Tri = arithmetic mean (Trusts of Hits that made the Rule a Relevant Rule).

Figure 4.3-7 —Calculation of Numeric Grade, sub-step A

Sub-step B requires calculation of the Numeric Grade associated with an Intermediate
Condition. Numeric Grade is the sum of the trusts of the Rules which resulted in the
Intermediate Condition.

Numeric Grade inermediate condiion = 2. TRi

Figure 4.3-8 -Calculation of Numeric Grade, sub-step B

Numeric Grade characterizes how many Hits lead to the Intermediate Condition and how
much they are trusted. It reflects the notion of “how big is the hole” in security.

43553 STEP 3

For each reachable Intermediate Condition, define a fuzzy measure of the certainty (belief)
for each Reachable Intermediate Condition, Belief jtermediate condition- IN Calculation of Belief,
we use the Tg; defined in Step 2, sub-step A.

Belief intermediate condition = MaXx { Tri }

Figure 4.3-9 — Calculation of Belief

This step uses fuzzy measurement theory, and standard fuzzy union of underlying beliefs.
Calculation of Belief by using maximum can be interpreted as a pessimistic acceptance of
tools: If a most trusted tool finds a vulnerability, we believe the Intermediate Condition to
the extent of our trust in that tool. Often, but not always, Belief will be 1.

43554 STEP 4

For each reachable Intermediate Condition, calculate the Opportunity for Exploitation, OFE,
as the maximum of the Possibilities of the Hits which triggered rules leading to the
intermediate Condition.

OFE; = max{Possibility of each Hit mapped to that Intermediate Condition}

30

Figure 4.3-10 - Calculation of Opportunity for Exploitation.

OFE (opportunity for exploitation) characterizes the maximum opportunity that a
vulnerability could be exploited. OFE ranges between [0, 1].

4.3.5.5.5 STEP 5

We selected three End Conditions, which are fuzzy sets named Data_End, User_End, and
System_End. Each set is defined by fuzzy set membership functions which have been pre-
defined by knowledge (security) engineers. Each fuzzy set is composed of Intermediate
Conditions and their respective membership values. For example,

End Condition; = {(Intermediate Condition,, membership value,) ...
(Intermediate Condition,, membership value,)}

Figure 4.3-11- Fuzzy membership function

Table 7.5-1 contains the fuzzy membership values use by the FuzzyFusion™ component.

« Account access
- Administrator access
- Backdoor access
 Data access
* File access
» Hardware access
» Hijack access
* Information access
* Network access

_+» Password access
» Privilege access
* Process access
« User access

« Coampromised
« Encryption
- TBI
Figure 4.3-12 — Characteristic mappings of 16 Intermediate Conditions to End Condition fuzzy

sets.

4.3.5.5.6 STEP6

Because Intermediate Conditions are not crisp sets, but rather have fuzzy belief measures,
we replace the definition in Step 5 with this more flexible definition of the fuzzy membership
function.

31

End Condition; = {(Intermediate Condition,, membership value, * belief,) ...

(Intermediate Condition,, membership value, * belief,)}

Figure 4.3-13 - Fuzzy membership function incorporating fuzzy belief measures

This definition lets us incorporate how much we believe in the tools into our End Condition.

43557 STEP7

The fuzzy membership function for each End Condition must be evaluated to be useful. We
used standard fuzzy center of gravity (“COG") de-fuzzification to get values for the three
fuzzy sets. E.g.

Valuepgata eng = COG (Data_End)

Figure 4.3-14 — Defuzzification method

Since the 16 Intermediate Conditions are not ordered, or even partially ordered, the COG
calculation specializes to be the mean in current implementation. The Value is always
between 0 and 1.

43558 STEP 8

Next, we use standard fuzzy union of the OFE for the Intermediate Conditions participating
in the membership function to get a OFE value for each of the three fuzzy sets. This is a
standard application of the crisp characteristic function to an attribute of the fuzzy set. For
example, for Data_End where the characteristic function is g

OFEpata £nd = Max (PFE inermediate condgiton » Where g(Intermediate Condition) = 1)

Figure 4.3-15 — Calculation of OFE for End Condition

OFE of the End Condition is a pessimistic view of the opportunity for exploitation found in
the Intermediate Conditions composing that End Condition. In other words, if there is a high
OFE anywhere, it is presumed that an attacker would choose that vulnerability to exploit.
The OFE is always between 0 and 1.

43559 STEP9

Some users may desire a way to compare the overall security vulnerability of one node in a
network against another node. In this final step, we calculate a numeric value for the node
using linear weighting:

Node Value = 0.167(Va|ueoa¢a_gnd . POEData_End)
+ 0.333 * (Valueyser_gna * POEuyser_gnd)
+ 0.500 * (Valuesysiem_end * POEsystem_gnd)

Figure 4.3-16 - Calculation of final node value

The Node Value is always between 0 and 1.

4.3.5.5.9.1 The divergence of IDEA FuzzyFusion™ from Stat Analyzer FuzzyFusion™

32

Stat Analyzer FuzzyFusion™ contained an inferencing process. The algorithm is
fundamentally as shown in Figure 4.3-17.

In our review of that inferencing process, we made three observations. First, little
inferencing actually occurred. Second, only two advanced states were reached by
inferencing. Third, the advanced states were usually also reached directly by application of
rules without inferencing. On reviewing the content of the knowledge engineers’ rules, it
appeared that almost all rules were stated giving a conclusion of the final state reachable,

rather than giving atomic, small-step conclusions which could be chained together to reach
conclusions about final states.

We concluded that we could omit the inferencing algorithm, and apply the Relevant Rules

to the Pruned Hits without needing a Start_Condition. This required minor restatement of
the rules.

Apply Relevant Rules to Pruned Hits and a given Start_Condition to find elevated
Conditions.

do Apply Relevant Rules to Pruned Hits and elevated Conditions
while (new elevated Conditions were produced)
Output list of elevated Conditions as the Intermediate Conditions

Figure 4.3-17 - STAT® Analyzer FuzzyFusion™ Inferencing algorithm

4.3.5.6 Conclusions

The IDEA FuzzyFusion™ algorithm provides three levels of granularity for viewing the
security condition of the node to which it is applied. Each granularity may be of use to
system users who have different needs. The algorithm provides detailed information over
16 conditions, which is useful to users desiring to prioritize repair tasks. It provides
summary information over three end conditions, which is useful to users needing to
evaluate the specific vulnerability with respect to data, users, and the system. Finally,
FuzzyFusion™ provides single, summarizing value for a node. The single value facilitates
comparisons across nodes in a network.

4.4 The Proof-Of-Concept Prototype

This section describes the implementation and use of the F'uzzyFusionTM component
prototype.

Appendix D contains the instructions for the prototype FuzzyFusion™ component delivered
with IDEA.

Section 4.4.1 is generated by Rational SoDA, a documentation tool that generates a Word
document from Rational Rose.

4.4.1 LOGICAL ARCHITECTURE

4.4.1.1 Overview

i
IDEA
Conponert

| FugfFision | . Database |
| ~; Comporent
| s
i

Figure 4.4-1: Component Layout

4.4.1.2 Class Structure

4.41.2.1 Overview

Figure 4.4-2: Main

4.4.1.2.2 Classes

4.4.1.2.2.1CldeaGUIApp
i
CldeaGUIApp:

See ldeaGUI.cpp for the implementation of this class
4.4.1.2.2.1.1 Attributes

4.4.1.2.2.1.2 Operations

Name Description

InitInstance

CIldeaGUIApp

4.4.1.2.2.2CldeaGUIDIg
T T T
CldeaGUIDIg dialog

4.4.1.2.2.2.1 Attributes

35

Name

Type Description

m hIcon

HICON

4.4.1.2.2.2.2 Operations

Name

Description

OnImportbtn

OnStartbtn

OnResetDBbtn

OnBrowsebtn

OnQueryDraglIcon

OnPaint

OnlnitDialog

DoDataExchange

CIdeaGUIDlg

4.4.1.2.2.3ldeaAdolnterface

4.4.1.2.2.3.1 Attributes

4.4.1.2.2.3.2 Operations

Name

Description

disconnectFrombatabase

NAME: disconnectFromDatabase

/*

/* TYPE: Function

/*

/* PURPOSE: Uses special pointer method "Release"” to free memory used by the
/* ADO Connection Object.

/*

/**

connectToDatabase ***
NAME: connectToDatabase
/*
/* TYPE: Function
/*
/* PURPOSE: Creates an instance of the ADO Connection Object. And opens the
/* connection to the database. The reference it uses is a member
/* class variable.
/**
openRecordset **-k******************************
NAME: openRecordset
/*
/* TYPE: Function - Private
/*
/* PURPOSE: Opens an ADO Recordset using a passed in reference to a Recordset
/* and a passed in query string.
/*
/*************t***************-k**
~IdeaAdolInterface
IdeaAdolInterface Constructor and Destructor
executeSelect ***i*****************************

NAME: executeSelect

36

7*
/* TYPE: Function

/*

/* PURPOSE: Definition of the pure virtual function inherited from the

/* abstractDatabase class. This function is used to execute a

/* SELECT query. A boolean value is returned to signify the
success

/* or failure of the query execution. The value parameters returnRS
/* and numRows are populated with data returned from the query

/* execution.

/*

/**

executeModify LES S S S R st e I I T I I I I I IT™™™
NAME: executeModify
/*
/* TYPE: Function
/*
/* PURPOSE: Definition of the pure virtual function inherited from the
/* abstractDatabase class. This function is used to execute an
/* UPDATE, INSERT, or DELETE query. A boolean value is returned
/* to signify the success or failure of the query execution.
/*
/**
executeModify

4.4.1.2.2.41deaApi

4.4.1.2.2.4.1 Attributes

4.4.1.2.2.4.2 Operations

Name

Description

clearExportFilename

Fhddrkhkkhhkhdhhdhdhkhdhohhdhhhkdhhhhhrkhhhkdkhhhkkhhdhhrkkhdhdhhkdhdddrrkhxdrhkhx
NAME: clearExportFilename

/*

/* TYPE: Function

/*

/* PURPOSE: Reset the export file value.
/*

/**

clearTools

Fhkdkhkhkhkhkdhkhkdhdhhhhhhkrdhhdhkdhhdrhhddhhhrrhhhdbdhdddhddrhhrhhbhkdhkhdrrhkbrhkhhkhhdk

NAME: clearTools

/*

/* TYPE: Function

/*

/* PURPOSE: Reset the tools array.
/*

/**

clearVulnerabilities

EX AR E ST S S S SaE E R R e R T I RIS
NAME: clearVulnerabilities

/*

/* TYPE: Function

/*

/* PURPOSE: Reset the vulnerabilities stored in the database.

/*

/**

clearPolicies

kkdhhkhkhkkhkhkhkhhhhrhhkkhkhhhhhddrrbhhrhkhhhdhrhrhkhhhkrrrhhdhhddkdrdrrhhrkdrhrrhrhrhdk
NAME: clearPolicies

/-k

/* TYPE: Function

/*

/* PURPOSE: Reset the policies stored in the database.

37

/*

/********************t********i************************************ﬁ*********

clearStartCondition LR R R RS R RS RS R AR R RS R R R R RS R R R SRR R RS R RER R RRRRRRRRRRRRR RS SR RS S
NAME: clearStartCondition

/*

/* TYPE: Function

/*

/* PURPOSE: Reset the start condition stored in the database.

/*

/****************it********************************i’*************************

ClearAll IR R R SRR R R R R R R R RS R S R RS R R R SRR SR RS RS RS R R SRR RS RRRS RS et ERS R R
NAME: clearAll

/1-

/* TYPE: Function

/*

/* PURPOSE: Reset the entire database.

/*

/***i**

fuse Ihkdkhkhhkhkhkhkdhhdhdhhhhhhrdhhhd kb rrhkddhdrhrhdhhkdhhdhhRokhddhddddkiddddkdddhddhriih
NAME: fuse

/*

/* TYPE: Function

/*

/* PURPOSE: Calls the fuse method of the Fuzzy Fusion API.

/*

/******t***********************i************i********’***********************

importData P R R R R e R S e SR 2 R s R AR SRS A S ALl L E S R
NAME: importbData

/*

/* TYPE: Function

/*

/* PURPOSE: Extract data from an input file in XML format using an MS XML
/* parser.

/*

/**

~IdeaApi

IdeaApi

4.4.1.2.2.5ldeaDatabaseApi

4.4.1.2.2.5.1 Attributes

4.4.1.2.2.5.2 Operations

Name Description
~IdeaDatabaseApi
IdeaDatabaseApi Constructor and Destructor
executeselect I I Sy s X2 S SR RS R S R 22 2 R R 80 R0 AS]
NAME: executeSelect
/*
/* TYPE: Pure Virtual Function
/*
/* PURPOSE: Provides an abstract interface. This function shall be defined
/* to execute a SELECT query. A boolean value shall be returned to
/* signify the success or failure of the query execution. The value
/* parameters returnRS and numRows shall be populated with data
/* returned from the query execution.
/-k
/****t**************t*************’**********************t******i************
executeModify P Y 2 R R 22 T R S SR RS RS SRR RS RS S22 2S8R a2ttt s
NAME: executeModify
/*

38

/* TYPE: Pure Virtual Function

/*

/* PURPOSE: Provides an abstract interface. This function shall be defined
/* to execute an UPDATE, INSERT, or DELETE query. A boolean value
/* shall be returned to signify the success or failure of the

/* query execution.

/*
/**

4.4.1.2.2.6ldeaDataManager

4.4.1.2.2.6.1 Attributes

4.4.1.2.2.6.2 Operations

Name Description
insertGrade LA S 2SR R RS R R SRR R R R R R R I I LI
NAME: insertGrade
/*
/* TYPE: Function
/*
/* PURPOSE: Executes a SQL statement to insert a grade into the database.
/*
/**
resetVulnerabilities Thkhdhkkkhkkhd kA kb Ak hkr Ak h kA Ak d ok hhhd kA h ok hhdhkhkdkhrkkhhhkdrhdrhdhhk
NAME: resetVulnerabilities
/*
/* TYPE: Function
/*
/* PURPOSE: Executes a SQL statement to delete all vulnerabilities from the
/* database.
/*
/**
resetpolicies Fhhkhhhhhhdhkrhdhhhkkrhkrhdd bk hdhhhhbrrrdrhhhhkhh kb hd bbbk hkkhhrhorhhrrhrbrhrk
NAME: resetPolicies
/*
/* TYPE: Function
/*
/* PURPOSE: Executes a SQL statement to delete all policies from the
database.
/*
/***i********************
resetstartcondition LA AR S S SRR R RS RS R R S R R RS R R R R R LR L)
NAME: resetStartCondition
/*
/* TYPE: Function
/*
~/* PURPOSE: Call a stroed procedure to reset the start condition.
/*
/**i*************************
initializeDB hkkkkdhdhdhdhkhhhhhdhhdkhhrhkhrhdhdhdrhdbhkhhrddrdhdrhhohkhhhhhohhdrhdbddhhddhrrrhdrhrdh
NAME: intializeDB
/*
/* TYPE: Function
/*
/* PURPOSE: Calls other member functions to in order to completely reset the
/* database.
/*
/**
insertstartcondition EE R RS SRR SRRt R R RE R X s R R R R RS R s TR RS R RE SRS RS
NAME: insertStartCondition
/*

39

/* TYPE: Function

/*

/* PURPOSE: Creates a SQL statment to insert a start condition into the DB.
/*

/**

insertlenerability R R R R e R R R S R RS RS SRR SRS R RS a R RS EERERRE SRS
NAME: insertVulnerability

/*

/* TYPE: Function

/*

/* PURPOSE: Creates a SQL statment to insert a vulnerability into the

database.

/*

/**i*******************************

insertVulnerability

insertPolicy P 2 sy R R R E SRS SR S SRS SR SRR RS SRR R RS RS R R R R RS
NAME: insertPolicy

/*

/* TYPE: Function

/*

/* PURPOSE: Creates a SQL statment to insert a policy into the database.

/*

/**********************i*‘k******************‘k**ﬁ*****************************

~IdeaDataManager

IdeaDataManager

4.4.1.2.2.7IdeaFloatType

4.4.1.2.2.7.1 Attributes

Name Type Description

fitValue float

4.4.1.2.2.7.2 Operations

Name Description
equa's ***************i***
NAME: equals
/1:
/* TYPE: Function
/*
/* PURPOSE: Compares another IdeaGenericDataType object with itself and
returns
/* true if they match, false if they don't.
/*
/**************}******************ﬁ**
tostring *************************************t***ﬁ**********t*****t***t************
NAME: toString
/*
/* TYPE: Function
/*
/* PURPOSE: Definition of the pure virtual function inherited from
/* GenericDatatype. This function is defined to cast the value
/* stored in the member variable fltValue into a string. The string
/* value is then returned
/*

/*********t***************t*********************'ﬁ****************************

40

floatVal LR LSRR R R R R Y R i I T T I T I T ™
NAME: floatvVal

*

;* TYPE: Function

/*

/* PURPOSE: Returns the value of the member variable fltvalue.

*

;**
~|deaFioatType
IdeaFloatType Constructor and Destructor

4.4.1.2.2.8ldeaFuzzyDataManager

4.41.2.2.8.1 Attributes

4.4.1.2.2.8.2 Operations

Name Description

setTools

| getPrunedHitsFromDB

getPrunedRulesFromDB Gets start condition for the node from the database.
Returns 0 for success; for other errors

getStartConditionFromDB

~ldeaFuzzyDataManager

ldeaFuzzyDataManager

4.4.1.2.2.9/deaFuzzyFusion

4.4.1.2.2.9.1 Attributes

4.4.1.2.2.9.2 Operations

Name Description

findMaximalEndCondition addToResults adds row to result set for the specified post condition.
Returns 0 if successful

addToResults 0etPOEOfRule returns the probability of exploitation of a rule based on the

probability of the hits relied on by that rule.
Returns 0 if successful

getPOEOfRule getTrustOfRule returns the trust for a rule based on the trust of the hits relied on by
that rule.
Returns 0 if successful

getTrustOfRule fillPostVector generates vector of strings containing distinct post conditions.

Returns 0 if successful

fillPostVector

fuse Methods

fuse
|_getEndCondition Gets results by reference. Returns 0 if successful, 1 if failure.
| getResuits Accessors

~ldeaFuzzyFusion

IdeaFuzzyFusion Constructors/destructor

IdeaFuzzyFusion

41

4.4.1.2.2.10 IdeaFuzzyFusionApi

typedef vector<ldeaHit> HitVector;

typedef vector<ideaRule> RuleVector;

typedef vector<ideaResult> ResultVector;

typedef vector<ideaStringType> ToolNector;

typedef vector<GradeConversionTable> ConversionTableVector;

4.4.1.2.2.10.1 Attributes

4.4.1.2.2.10.2 Operations

Name Description
setTools
getPrunedHitsFromDB Gets the pruned rules from the database.
Invokes IdeaFuzzyDataManager::getPrunedRulesFromDB
Returns 0 on success.
getPrunedRulesFromDB Gets start condition for the node from the database

Invokes IdeaFuzzyDataManager::getStartConditionFromDB
Returns 0 on success.

getStartConditionFromDB

Mutators

int setStartCondition(const string aStartCondition);
// Sets the start condition to e.g. data, user, system.
// Returns 0 on success.

fuse Methods

getEndCondition Accessors. All return 0 on success.
~IdeaFuzzyFusionApi

ldeaFuzzyFusionApi Constructors/destructor

4.4.1.2.2.11 IdeaGenericDataType

4.41.2.2.11.1 Attributes

4.4.1.2.2.11.2 Operations

Name Description
equals T Y222 22 2 2 R 2222 222222 Rttt bt il
NAME: equals
/*
/* TYPE: Virtual Function
/*
/* PURPOSE: Compares another IdeaGenericDataType object with itself and
returns
/* true if they match, false if they don't.
/*
/*******t**t*****i****ﬁ******
SetType *******t***********t**********i**********************t***********ﬁ***i*****
NAME: setType
/*
/* TYPE: Function
/*
/* PURPOSE: Set the value of the member variable dataTypeEnum. This function
/* has a protected scope so that only a derived class can call it.
/-ﬁ

42

/**

tostring ***
NAME: toString
/*
/* TYPE: Pure Virtual Function
/*
/* PURPOSE: Provides an abstract interface. This function shall be defined
/* to cast the stored value into a string. The string value shall
/* then be returned .
/*
/**
getType *******************i***
NAME: getType
/*
/* TYPE: Function
/*
/* PURPOSE: Returns the value of the member variable dataTypeEnum.
/*

/**

~IdeaGenericDataType

IdeaGenericDataType Constructor and Destructor

4.4.1.2.2.12 IdeaHit

4.4.1.2.2.12.1 Attributes

Name Type Description
theTrust float
theProbability float

4.4.1.2.2.12.2 Operations

Name Description

setHit Mutators
getToolName
| getNum

| getProbability
_getTrust Accessors - all return 0 on success
~ldeaHit
IdeaHit Constructors/Destructor
IdeaHit

4.4.1.2.2.13 IdealntegerType

4.4.1.2.2.13.1 Attributes

Name Type Description
intValue int

43

4.4.1.2.2.13.2 Operations

Name

Description

equals

NAME: equals

/Q

/" TYPE: Function

l'

I* PURPOSE: Compares another ldeaGenericDataType object with itself and returns
" true if they match, false if they dont.

/t

/

intVal

NAME: intVal
,t
I* TYPE: Function
,'
I* PURPOSE: Returns the value of the member variable intValue.

r
/

toString

NAME: toString
I* TYPE: Function

"
I* PURPOSE: Definition of the pure virtual function inherited from

r GenericDatatype. This function is defined to cast the value

r stored in the member variable intValue into a string. The string
r value is then returned .
/.
I

~ldealntegerType

IdeaintegerType

Constructor and Destructor

4.4.1.2.2.14 IdeaResult

4.4.1.2.2.14.1 Attributes

Name Type Description
theNumericGrade float
thePOE float

4.4.1.2.2.14.2 Operations

Name Description
setResult Mutator
| _getCondition
| getNumericGrade
getPOE Accessors. All return 0 on success.
~|deaResult
ldeaResuit Constructors/destructor
ldeaResult

4.4.1.2.2.15 IdeaRule

4.4.1.2.2.15.1 Attributes

4.4.1.2.2.15.2 Operations

Name

Description

setRule

Mutator

| getRulelD

| getPre

| getPost

| getNum

accessors Return 0 on success

~ideaRule

IdeaRule

constructors/destructor

IdeaRule

4.4.1.2.2.16 IdeaStringType

4.4.1.2.2.16.1 Attributes

Name Type Description
theStringtength int
strValue char*

4.4.1.2.2.16.2 Operations

Name

Description

IdeaStringType

trequals

hhkdkkhkhhkhkhkhkbkkdhhhhhhhhdhrkrhrhdhhkdhhdhrdhhhhkddddbrhddhrdhrdrrhkrhrrdhohd
*hkhhkkkkkhkd

NAME: operator ==

/*

/* TYPE: Equality test Operator

/*

/* PURPOSE: Returns true if values are egual, false if not.

/-k
/**
hkdArkdkhkdhkh

IdeaStringType
or=

::operat

ddkkkkhkhkkhkkhhkhhhhkhhhdhhkhkdhhrhhkrhhdhhhhddhhhhhdrhkhkhdkrhkhhkhhdhdkddkhk
dede ok de gk hkkok

NAME: operator =

/*

/* TYPE: Assignment Operator

/*

/* PURPOSE:

// Note: C++ requires that = can be overloaded only as nonstatic
member function.

/*
/**********************************i*****************************
J e de ok g g kodoke ke

45

IdeaStringType::getStr
ingLength

khkdhkhkkhhd bk ke hkrhdrrrrhbrdrhr kbbb kbt rrd kb rh kb hrhrrrrhhih
Tk hkdkk kR h ok

NAME: getStringLength

/*

/* TYPE: Function

/*

/* PURPOSE: Returns length of the string.
/*

/******************************-k*********************************
Fdkhk ok kdkhkhkhk

IdeaStringType::toStri
ng

kAT AR A Ak b kT kb d T rh b drhkdddrdrhk drdddddkhdd ki kdhhddkii
drdd ok kok ok ok ok ok

NAME: toString

/*

/* TYPE: Function

/*

/* PURPOSE: Definition of the pure virtual function inherited
from ’

/* GenericDatatype. This function is defined to return
the value

/* stored in the member variable strvValue.

o

/***********************t**
Kk dedrde Kok ododok kK

IdeaStringType::string
val

[R R S A R E S R R R AR E R SRR SRR SRR SRR RS REEElsRn Rl
* Kk h ok ddek ok ok ok

NAME: stringVal

/*

/* TYPE: Function

/*

/* PURPOSE: Returns the value of the member variable strValue as
a char*.

/*
/*******************i***i**
Je de de deode dek ok gk ok h

IdeaStringType::~IdeaS
tringType

IdeaStringType::IdeaSt
ringType

Constructor and Destructor

IdeaStringType: :IdeaSt
ringType

IdeaStringType: :IdeaSt
ringType

Copy constructor to properly init new instances of the class
IdeaStringType

4.4.1.3 IDEA Component

4.4.1.3.1 Overview

The IDEA Component is responsible for providing a complete interface to client
applications. The IdeaApi class contains the component’s interface operations.

46

CldeaGUIDIg | e

Ideadpi

o "dearEmorFlbremeO
E daarT ools()

. dear\/l.hemhlmea')

dearPdlcuas()

ldeaFuzzyFusionfpi
(fromFuzafFusion Conperert)

o 2 sefTools)
SRS gePnnedHlsFronDElo
e gelPrmethJesFronDBﬂ

] SgetStartConditiorFromDEY)

getErdCordmon()

$-iual>> ~{deaF uzaFusionpil)|

* i "ldeaFuzzyFusorvﬁpuo

s *dearAlo
mportDate)

% dearStartCorditiony) |

q‘<d/| thual>>~deaApi()

A Matni0

vgr

IdeaDataManager
fromDatabase Covponert)

lnsertGadeO
raet\mlrerabllmeso
r&eelPohuesO
reaetSanCondm or)
|n|l| alizeDE])
%nsertStartCondition)
$insertVinerability)
"lnsen\/i_llrerab iity)
msenPoIlcy()

$ cainuat>>~deaDataManager() | - -

"IdeaDanrvlanagert)

4.4.1.3.2 Classes

4.4.1.3.2.1 IdeaApi (NormalClass)

Figure 4.4-3: Main

4.4.1.3.2.2 CldeaGUIDIg (NormalClass)
g

CldeaGUIDIg dialog

4.4.1.4 FuzzyFusion Component

4.4.1.41 Overview

ideaGenesicDataTyp
e

IdedF eaf wionfpi

@ setToos()
~gaPrrediisFromDE)
1 * gePruredRuesFramDB)
. :::Stzﬁ:a\dﬁorfronom

| gdEndCondtior)
: “<aithuals>~ide F LA LsionAp(l
[dedF uaf wionfpig

| - phedesFuzQiabinags

deaF unDaaMnages
fromDatabase Compone:

]

Figure 4.4-4: Main

441.4.2 Classes

4.4.1.4.2.1 IdeaFuzzyFusionApi (NormalClass)
typedef vector<ideaHit> HitVector,

typedef vector<ideaRule> RuleVector;

typedef vector<ideaResult> ResultVector;
typedef vector<ideaStringType> ToolVector;

typedef vector<GradeConversionTable> ConversionTableVector;
4.4.1.4.2.2 IdeaFloatType (NormalClass)

4.4.1.4.2.3 IdealntegerType (NormalClass)

4.4.1.4.2.4 IdeaGenericDataType (NormalClass)

4.4.1.4.2.5 IdeaHit (NormalClass)

4.4.1.4.2.6 IdeaFuzzyFusion (NormalClass)

48

4.4.1.4.2.7 IdeaRule (NormalClass)
4.4.1.4.2.8 IdeaResult (NormalClass)
4.4.1.4.2.9 IdeaStringType (NormalClass)
4.4.1.5 Database Component

4.4.1.5.1 Overview

[deaFuzznyDataManager |dealataManager
o] YeetTools() %insertGrade()
-+ | MgetPruredHitsFromDB() | *resetvuinerabiliies)
‘| “getPruredRuesFranDR) *resetPolides()
1 %getStatConditionFronDR() *resetSatCondition()
5| S<ainual>> ~deaFuzzDataManager()|| *initiali ZDE)
| MdeaFurzDataManager() *insentStatCondition()

YinsertvLinerability)
Yinsertvunerability)
YinsertPolicy() :
| $<avirual>>~dealataManager()| *
YdeaDataManager()

| IdeaDeatahaseApi

| D& DB/

| |deatdohterface

Figure 4.4-5: Main

49

44152 Classes

4.4.1.5.2.1 IdeaDatabaseApi (NormalClass)
4.4.1.5.2.2 IdeaAdolnterface (NormalClass)
4.4.1.5.2.3 IdeaDataManager (NormalClass)

4.4.1.5.2.4 |deaFuzzyDataManager (NormalClass)

50

4.5 Testing and Evaluation

4.5.1 Analysis of results

Along with generating the intermediate conditions (Vulnerability Category, Grade, and
OFE), the FuzzyFusion™ component generates three additional measures:

1) The values for three End Conditions (Data_End value, User_End value, and
System_End value),

2) End value,

3) Terminal Condition (one of Data, User, System). This value is current
unimplemented, but would be the greater of the three - Data, User, System).

The seventeen intermediate conditions lead to the three fuzzy sets: Data_End, User_End,
and System_End. The values of the three fuzzy sets are calculated using a Center Of
Gravity (COG) function. Using COG, IDEA calculates the defuzzified values for the End

Conditions using the Trust and the vulnerability category contributions as defined by the
fuzzy membership functions.

End value is calculated directly from Data_End, User_End, and System_End. The Terminal
Condition, although not physically implemented, would be the larger of the three fuzzy sets:
Data_End, User_End, or System_End.

IDEA used test data generated at the STAT® Analyzer test facility. This data is STAT®
Scanner vulnerability results from STAT® Analyzer's test machines.

The following sections discuss the results of applying FuzzyFusion™ technology to the test
data.

4.5.2 Quality of Results

The measure of quality of data fusion techniques can be problematic. It is often difficult to
identify what constitutes ground truth, and even more difficult to obtain that ground truth for
comparison to algorithm results. If ground truth is not obtainable, it is useful to select a
“strawman’” for testing. The results of IDEA FuzzyFusion™ are tested for validity against
the strawman, because a ground truth was not obtainable.

4.5.2.1 Ground truth

We attempted to obtain ground truth by consulting four security engineers. We asked each
individually to review scan information for a small network and to report on “the overall
security vulnerability” of each node at the time of each scan. We provided STAT® Scanner
results of 44 scans on twelve individual machines. Each machine had been scanned two to
five times. The results from STAT® Scanner include a detailed description of the
vulnerability, as well as a categorization of each vulnerability as “high severity,” “medium
severity,” or “low severity.”

After beginning the review, the security engineers reported that because STAT® Scanner
located between 60 and 190 individual vulnerabilities with each scan of a node, it was not
possible to synthesize those vulnerabilities and reach a conclusion on “the overall security
vulnerability” of each node at the time of each scan. The security engineers then met and
suggested a heuristic that if any “high” severity vulnerability was found on a node, it should

51

be classified as highly vulnerable. We deemed this heuristic not useful. Each node in the
network had at least one “high” severity vulnerability. The heuristic would not allow useful
discrimination among the vulnerability level of the machines.

4.5.2.2 Strawman

We chose to use the distribution of the vulnerabilities as the basis for a strawman. If the
number of “low severity” vulnerabilities reported by STAT® Scanner was within one
standard deviation of the mean, the node would be labeled “medium vulnerable.” If the
number of vulnerabilities was below minus one standard deviation, the node would be
labeled “low vulnerable;” if above plus one standard deviation, it would be labeled “high
vulnerable.”

Figure 4.5-1 shows the distribution of vulnerabilities for 44 scans. The correlation of the
counts of low, medium, and high vulnerabilities is visually apparent. Scatter graphs confirm
the correlation.

Using the strawman having a mean of 106, and a standard deviation of 17, we identified
four scans where the count of low vulnerabilities was below 89, and one scan where the
count of low vulnerabilities was above 123. The other 39 scans were labeled medium
vulnerable.

52

140
120
100
80
L 4
[=
=]
o
o
60
40
20
D A P N il Sy . A -
- ¥ M~ O O © O N W o = g >~ O O
- — -— o o N m o ™ ~r <
Scan number

Figure 4.5-1 - Distribution of severity levels reported by STAT® Scanner during forty-four
scans of twelve nodes. ’

The graph shows the vulnerability count found by STAT® Scanner across 44 scans. Note
that the bottom value represents the vulnerabilities with the greatest importance.

4.5.3 Comparison of results

4.5.3.1 Defuzzification of End Conditions Method 1

The values the FuzzyFusion™ component returns for the End Conditions are based upon
the fuzzy membership functions and the user-provided value of vulnerability Trust. Figure
4.5-2 shows the results of the FuzzyFusion™ component as implemented on IDEA.

07 FuzzyFusion™ ComponentResults]

" Data End
—=— User_End

sy

(3]
~r

L e S L e s
[B> B -+ B
[y 2 > TR o B S N 4

Figure 4.5-2 — FuzzyFusion™ Component Results

Analysis of the figure yields inconclusive information when the Trust provided for each
vulnerability is 1 — meaning that we fully trust the vulnerability to be accurate. The
assumption that Trust would normally be 1 is based on STAT® experience that only rarely
is vulnerability information incorrect. With the Trust of the input data set to 1, the
FuzzyFusion™ algorithm is simply adding the fuzzy membership contributions for the
calculations of the End Conditions.

For our next step of data analysis we imported the FuzzyFusion™ component results into
an Excel spreadsheet. Using Excel, we researched various defuzzification algorithms for
generating values for the end conditions (Data_End, User_End, and System_End).

4.5.3.2 Defuzzification of End Conditions Method 2

Our first approach was to use the intermediate results for Grade and OFE along with the
fuzzy membership functions. The values for the End Conditions are strikingly similar to that
in STAT® Scanner’s output (see Figure 4.5-1).

80 £

70

60

Data_End
—a— User_End
—a— System_End

20

10

-
- MO O M~ O = MO W N O - MO W M O M O NN OO - M
- T e o T NN N NNMOMO MM M T

Figure 4.5-3 End Conditions using Fuzzy Membership Contributions and Grade and OFE

Unlike the STAT® Scanner output in Figure 4.5-1, Figure 4.5-3 ranks the most pressing
vulnerabilities highest in the graph. As does STAT® Scanner, FuzzyFusion™ concludes
that node 8 contains the greatest system-level vuinerabilities. However, in contrast to
STAT® Scan’s results, FuzzyFusion™'s results show one node (node 8) as having the
highest exposure (approximate value of 76).

The distinguishing factor in using Opportunities for Exploitation in the FuzzyFusion™
calculations is that the outcome may be tailored to the nature of the network or node. If it is
not possible to gain physical access to a machine, several exploitation opportunities would
not be possible. For example, exploiting the fact that the clipboard’s contents are available
at the login screen is not possible without physical access to the machine. So, in addition to
Security Policy — which FuzzyFusion™ uses only to tailor its vulnerability assessment, OFE
is very useful in fully understanding the vulnerability for a node.

To show how OFE is useful in vuinerability assessment, Figure 4.5-4 graphs identical
vulnerability information, Grade, Trust, but minimizes the system access OFEs. In the
figure, Data_End ranks highest for the same machine.

55

—a— User_End

—+—System_End

Figure 4.5-4 — Modifying OFE

4.5.3.3 Defuzzification of End Conditions Method 3

In the previous section Grade was used in the analysis. This is fine for a single tool,
however vulnerability assessment across several tools (for a single node) would produce
varied results. As tool's overlap in their ability to detect vuinerabilities (and as tool maturity
differs), a vulnerability detected by one tool may not be detected by another. Grade, being
a calculation dependent on the number of vulnerabilities, will skew results where tool-
detected vulnerabilities overlap.

This analysis method removed Grade from the calculations of the values of the End
Conditions. In Figure 4.5-5 we see that removing Grade slightly affected the trend of the
result. In both figures (Figure 4.5-5 and Figure 4.5-1) the machine most significantly
vulnerable is obvious.

56

Sum (Fuzzy Membership * OFE) for each End

g
Sy

Condition

T
o

Data_End
—a— User_End
—a— System_End

Figure 4.5-5 — End Conditions using Fuzzy Membership Contributions and OFE

Also, as in the previous analysis method, minimizing OFE for system access produces
notable results. The same network node is again identified as being the most vulnerable

node in the network.

9
peeli

Al

Data_End
—u—User_End
—a— System_End

Figure 4.5-6 ~ Modifying OFE

57

4.5.3.4 Discussion of Results

The lack of discriminating results in Method 1 is a major drawback. Not being able to
pinpoint or distinguish the more vulnerable nodes from the less vulnerable ones, the
system administrator will be helpless.

Method 2 and 3 look very promising in that they are not only strikingly similar to the straight
ranking of STAT® Scanner, but that they are able to distinguish individual nodes to fix.
Since Method 3 supports multi-tool analysis it is the method of choice for FuzzyFusion™.

4.6 Research into Natural Language Processing

Towards the end of the IDEA effort, Kevin Pratt researched the feasibility of using Natural
Language Processing (NLP) analysis on STAT® Scanner, ISS, and CyberCop vulnerability

text. The results were very promising — NLP finds the proper category in more than 80% of
the test examples.

4.6.1 Discussion of Research

Security engineers write descriptions of each of the vulnerabilities found by tools. They then
spend substantial time assigning the vulnerabilities to various sets of categories for use in
further analysis.

We investigated whether a program could be developed which would learn from the prior
descriptions and their categories so that future descriptions could be automatically
assigned to the appropriate categories, or in the alternative, so that a "short list" of likely
category assignments could be offered to security engineers so as to speed their
categorization task.

The descriptions are between 15 and 300 words in length, and are written in ordinary
English by security engineers. The categories are phrases of one to four words.

We proceeded in two steps. The first step was to distill the descriptions. The global
vocabulary was over 2500 words. We removed words deemed to have little content. Our
list of 180 words to remove included common prepositions, adverbs, pronouns, and non-
transitive verb forms, for example, "inside," "only," "they," and "being." We also removed
words of one or two letters, for example "a," and "at." We next applied a heuristic to obtain
roots from standard forms of plural nouns, past tenses and participles of verbs, and
adverbs. We did not attempt to define roots for irregular verbs, nor did we attempt to define
synonyms. We discarded all duplicate words. By distiliing, we condensed the global
vocabulary used in the descriptions from about 2500 words to about 1500 words. We did
not parse the descriptions, nor did we attempt to establish the relations between words
within each description or phrases in the descriptions.

We used the identical method to distill training example descriptions and testing example
descriptions.

The second step was to apply learning algorithms. Learning involves training, followed by
testing. We used various data sets, ranging from 450 training examples and three
categories, to 2000 training examples and 150 categories. With each data set we tested on
approximately 100 randomly selected new test examples and compared the categories
selected by the learning algorithms with the actual categories specified by the security
engineers in order to determine the effectiveness of each approach.

58

One standard representation of multi-featured data for use with learning algorithms is a
feature vector. We constructed a data structure which held a schema describing each
feature by name, and by type. Specifically, the schema used was an alphabetized list of the
distilled vocabulary, and the type of each schema field was a C++ string. We stored each
description as a binary valued feature vector of the vocabulary. Thus, with 450 examples
and a vocabulary of 1500 words, we would have a table of 450 rows and 1500 columns
containing 450 x 1500 elements. A 1 in the element meant that the word at that column of
the schema was present in the description; a 0 meant it was absent. We also stored the

category that had been assigned to the example. We constructed additional tables to hold
information summarizing the category

The learning algorithms were these:

A For each category, make a list of all words that were found in the descriptions of the
category. Count how many times the words in a test example were found in the list.

Conclude that the list with the most matches indicates the best category for the test
example.

For algorithms B and C, we calculated a past probability vector for each category. The
vector has a value at every field which is the number of occurrences of a word divided by
the total occurrences of the word in all categories.

B When a word in a test example was found in the past probability vector, add the
value of the past probability vector at that feature to a total. Conclude that the category with
the highest total indicates the best category for the test example.

Cc When a word in a test example was found in the past probability vector, add the
value of the past probability vector at that feature to a total, and keep track of how many
words had been found in that past probability vector. Conclude that the category with the
highest average indicates the best category for the test example. We expected that this
would work better than B because in B the total would be higher just because more words
were found. Using the average would be less biased.

For the next algorithms, we always calculated a centroid vector for each category. The
centroid has a value at every field which is the number of occurrences of a word divided by
the maximum number of possible occurrences of the word in a category. Use of a centroid
vector to characterize a category is a standard procedure used in clustering and learning.

D Measure the distance between the test example vector and the centroid of a
category. The shortest distance indicates the best category for the test example. The
distance is the sum of the distances at each feature.

E Measure the Euclidean distance between the test example vector and the centroid
of a category. The shortest distance indicates the best category for the test example.
Euclidean distance is the square root of the sum of the squares of the distances. Itis a
standard method in geometric space which has often been extended to feature vector
analysis. Euclidean distance accentuates the distances where features are least similar.

F Treat the test example vector as a "mask" when applying algorithm D. The effect is
to ignore the hundreds of words where there is no match. Instead, we look only at the
distances for words existing in the example. We expected that this would work better than
D because the “noise” from the features present in the centroid, but absent in the test
example, would be ignored.

59

G Treat the test example vector as a "mask" when applying algorithm E. The effect is
to ignore the hundreds of words where there is no match. Instead, we look only at the
distances for words existing in the example. We expected that this also would work better
than E.

H We began work on two additional algorithms. One would use a decision tree which
selected features based on information theory, and pruned with chi-squared pruning, to be
applied on a masked features. The other would apply Euclidean distance to normalized
feature values. We did not complete these algorithms.

Results:

Random selection would result in a correct categorization in the inverse of the number of
categories. For example, with 40 categories, random selection would find the correct
category for 2.5% of the test examples.

We show results for the seven implemented algorithms in Table 4.6-1. We show the
percentage of times the correct choice was the first choice, second choice, and third
choice. We also show the percentage from random selection. In each instance, 80% of the
examples were used for training, and 20% for testing.

Table 4.6-1 — Results from application of five learning algorithms.

Algorithm 550 Examples 2128 Examples | 2141 Examples 2141 Examples
38 Categories 4 Categories 9 Categories 217 Categories
1st {2nd |{3d |[1st |2nd |3d |1st |2nd |[3d |1st (2nd | 3d
Random {26 [26 {26 [25 |25 (256 |11 |11 11 105 |05 |0
66 |13 |3 52 |29 |18 [60 |14 11 [43 |12 |6
61 (17 |5 59 128 |12 |63 |11 6 41 |11 |9
60 17 |5 62 (25 {13 |64 |13 45 |12 |6

1 7

5 8

1 7

41 |12 22 |15 |16 |17 |9 21 |7
59 |18 62 (25 |12 |65 |13 45 |12
41 |12 22 |15 |16 |65 |13 21 |7
G 38 |19 |14 |42 (31 |24 (65 |13 6 32 8 7

We conclude that algorithms A, B, C and E perform well, far exceeding random. Tuning of
the algorithms, and elaboration of the other algorithms mentioned above may be important
future work. We expect that security engineers may also disagree about categorizations at
times. We did not test how security engineers would have performed given the same test
examples.

MmMimMmiojoO|m; >

DM |O| O

60

5 Conclusions

The IDEA research has resulted in a proof-of-concept prototype demonstrating a
comprehensive vulnerability analysis based on vulnerability scanner data. Users of the
component have a simple, open interface available for performing vulnerability assessment
for a single node using multiple tool results.

The following sections summarize the conclusions that can be drawn from the IDEA effort.
Next, a number of improvements to the IDEA prototype have been identified. These
improvements would enhance the usability of the tool for a systems security engineer.
Finally, we have also identified a number of areas for further research.

5.1 IDEA Program Conclusions

The IDEA proof-of-concept prototype has demonstrated that multiple risk assessment tools
with different modes of operation can be combined to provide a more complete picture of a
node’s level of exposure. It has also demonstrated, through the use of OFE, that it is
possible to identify nodes, across a network, which are at a greater level of risk.

The primary advantage of the IDEA prototype is its XML interface. Coupled with the
promising research of NLP, the ability to expand support of scan tool outputs becomes a
relatively simple operation.

The FuzzyFusion™ component was designed to be used in an enterprise distributed
vuinerability assessment solution. Research into Levels of FuzzyFusion™ showed that the
component fully supports distributed vulnerability detection. One of the current problems
with assessing vulnerabilities across large networks is the amount of time necessary for a
centralized server to scan all nodes. As a distributed component, FuzzyFusion™ provides
vulnerability assessment in near real-time.

The FuzzyFusion™ component was scaled for the highest degree of reuse. The XML
interface provides a standard communication mechanism. The small interface of the
component provides enough capabilities to perform several vulnerability assessment tasks.

5.2 Areas for Improvement

One focus area for improving the usability and function of the current FuzzyFusion™
component is allowing the component to maintain node history and use historical
information in the assessment of the node’s Terminal Condition.

Implementing the FuzzyFusion™ End Condition calculations as described in Method 3
would bring the component up to date with the accumulation of research performed on
IDEA.

Because of the nature of a component, the primary areas for improving the FuzzyFusion™
component reside in its use as a black box rather than in modifying its behavior or
expanding its functionality. For example, it is quite possible to maintain history information,
or perform alternate calculations for End Conditions outside of the FuzzyFusion™
component.

Along this line of approach for improvement, implementing NLP in mapping external
vulnerability scanner tool results to FuzzyFusion™-internal database information would
support quicker and possibly more accurate tool integration.

61

6 Future Work

As with any new research area, there are several directions and areas that could be

explored for future research. The areas described below are topics that could be addressed
in the next 18-36 months.

6.1 Real-time Vulnerability Analysis

One area of great interest is the capability to detect vulnerabilities in near real-time. To do
so, a dynamic framework of vulnerabilities would have to be created. This would be the
domain of existing scanning technology such as the STAT™ scanner or ISS Scanner. Once
the vulnerability tools are in place, Fuzzy Fusion™ could be applied to correlate the results
of multiple scans. With this approach, the end user would benefit from having diverse
scanning technologies available and in use, with the additional assurance that a detected
vulnerability exists with a high degree of confidence.

6.2 Real-time Intrusion Detection

Another area that could benefit from Fuzzy Fusion™ correlation is the area of real-time
intrusion detection. Again, the correlation engine would be applicable to fuse the results of
multiple intrusion detection sensors. With current generation intrusion detection technology,
these outputs would be the results of comprehensive, attack signature or pattern based
intrusion detection systems. Some research to date has indicated that less complex
intrusion detection systems, consisting of more specialized sensors deployed at various
points in the network, may be a more efficient intrusion or anomaly detection technology.

In this scenario, Fuzzy Fusion™ could be applied to correlate the results of the various
sensor technologies into a cohesive end result. For example, if the specialized intrusion
detection sensors detect different anomalies that would indicate an intrusion in progress,
the correlation and resolution of the results would be generated by Fuzzy Fusion.™

6.3 Fixing Vulnerabilities

One area discussed in our final Blue Ribbon panel meeting was the capability to prioritize
vulnerabilities for repair, based on a user defined priority scheme. For example, a rule of
thumb in information assurance states that a user can have two out of three characteristics
in his system: mission functionality, performance, or information assurance. In this
scenario, Fuzzy Fusion™ could be used to optimize the equation and incorporate a cost
metric to recommend which vulnerability should be addressed first when fixing a corporate
network.

“If the company’s CIO has $100,000 to spend on fixing network
vulnerabilities, how best can the money be spent?” Dr. Blaine Burnham.

The FuzzyFusion™ component can be made fully capable of addressing this issue by
modifying it to trace the end conditions of the node back to the set of vulnerabilities which
led to that set of end conditions.

Within the FuzzyFusion™ component, the database maintains the list of client inputs.
These inputs contain vulnerability and OFE information (as well as trust and tool). To
identify which vulnerability to address first, we take the highest end condition (System over
User over Data) and trace it backwards to the intermediate condition(s) whose fuzzy
membership rules lead to the end condition. We then take each of these intermediate

62

conditions and trace them back to their mapped IVEs and then back to the vulnerabilities
mapping to the IVEs. If we sort these resulting vulnerabilities according to the value of their
OFE information, we have an ordered list of vuinerabilities to address. Those vulnerabilities
with the highest OFE values are fixed first, those with the next highest are then fixed, etc.

in response to the question raised by the Blue Ribbon panel it is relatively simple to
produce a vuinerability fix-list for each node on a network. This fix-list could also take into
account level 3 and level 4 exploitation path information which would direct the fix-list to
individual nodes on the network.

Figure 6.3-1 shows, in red, a possible reverse mapping from the node condition, System
End, to the vulnerabilities which led to it.

Vulnerability 0 | OAF 0
Vulnerability 1 | OAF 1 —\\

Vulnerability 2 | OAF 2 IVEO ———\ Femediate

Vulnerability 3 | OAF 3 W IVE 1 Condition 0

Vuinerability 4_| OAF 4 IVE 2 Tnfermediate - H p3ta Enc
Vulnerability 5 | OAF 5 —-X&— IVE 3 Condition 1 System End
Vuinerability 6 | OAF 6 IVE 4 Dtermediate |

Vulnerability 7 | OAF 7 IVE S ——/

Vulnerability 8 | OAF 8 |
Vulnerability 9 | OAF 9

Figure 6.3-1— Mapping of the End conditions to the Vulnerabilities that led to it

6.4 Maintaining Histories

6.4.1 Trust

Can we modify the Trust modifier for a tool/vulnerability datum based on historical
information? That is, can we generate a confidence index for a given tool's results based on
the captured history of use information. For example, if, among several scanning tools, one
historically misses significant vulnerabilities in the systems scanned, this tool would have a
lower confident rating than other scanning tools.

6.5 Security Policy Meta-Language

One topic researched during IDEA was the concept of a security policy meta language. We
developed the concept as a technique for policy specification that could make the policy
specification process more meaningful to the end user. To do so, we applied knowledge
engineering and extraction techniques to experienced security engineers to determine the
appropriate syntax for a meta language. Then, we defined a set of possible noun and verb
constructs to specify policy actions.

The meta-language, if developed as a separate concept, could have applicability to other
areas of policy definition. For example, red teams characteristically express their actions in
terms of goals and objectives. It would be possible to apply the meta-language to define
attack-defend activities and express the results in a standard syntax. This would
accommodate result correlation and allow better communication with the end user.

63

6.6 Generalization of Fuzzy Fusion™

Throughout this phase of our research, we have considered development of a more
general-purpose Fuzzy Fusion™ engine that could be applied to correlation of multiple data
types in various problem domains. On the advice of our Blue Ribbon panel, we suspended
this line of research. The belief of our panelists was that there are already several general
purpose tools in place in the research community. What is unique about Fuzzy Fusion™ is
the domain specific application and its capability to solve multiple problems within this
domain. It is their recommendation that we continue to evolve the correlation capabilities
and generate a more comprehensive worked example in the information assurance
domain, then expand outward to other domains.

6.7 Natural Language Processing of Vulnerabilities

Towards the end of our research, we considered the ability to automatically generate
mappings between tool-produced vulnerabilities and the IDEA Taxonomy information. The
capability to automatically generate these mappings would facilitate plugging in new
vulnerability scan tools to the FuzzyFusion™ component.

Currently within the STAT® Analyzer database, there are over 2000 tool-generated
vulnerabilities mapped. NLP promises automatic correlation between tool vulnerabilities
and the IDEA Taxonomy.

7 Appendix A - Data

7.1 IVE Table
This table shows the IVE identifier and its meaning.

Vulnerability results from external tools, STAT in this exercise, are mapped to the

Table 7.1-1 - IVE information

Taxonomy
Identifier

Description

Identification and Authentication items

IVE-001 No access without |+A
IVE-002 No user access without I+A
IVE-003 No user access from console without I+A
IVE-004 No user access from network without I+A
IVE-005 No root access without I+A
IVE-006 No root access from console without I1+A
IVE-007 No root access from network without I+A
IVE-008 No privilege elevation without I+A
IVE-009 No privilege elevation from console without I+A
IVE-010 No privilege elevation from network without |+A
IVE-011 No user access from administrator
IVE-012 Users ID before access (individual or group)
IVE-013 Uniquely ID individuals only before access (no groups)
IVE-015 No guest accounts
IVE-016 No anonymous accounts
IVE-017 Do not ID via host
Do not ID host acting on behalf of user or group instead of user or group
IVE-018 itself (.rhost)
ID host acting on behalf of user or group instead of user or grbup itself, as
IVE-019 long as membership in group implies list of specific users in that group
IVE-020 No default accounts
IVE-021 Do not ID on remote component (A server)
IVE-022 All users require authentication

65

Taxonomy | Description

Identifier

IVE-023 No accounts without password

IVE-024 No user accounts without password

IVE-025 No domain user without password

IVE-026 No NULL Sessions

IVE-027 No guest accounts without password

IVE-028 No blank passwords present, but allowed

IVE-029 No root accounts without password

IVE-030 No domain root without password

IVE-031 Assign conditions requiring re-authentication

IVE-032 Protect/maintain authentication data

IVE-033 Stored passwords are encrypted

IVE-034 Password encryption strength meets policy

IVE-035 Encrypted passwords are protected (Access Control)
IVE-036 Passwords are not cached for user

IVE-037 Encrypted passwords are not accessible unencrypted
IVE-038 Protect previous (plaintext) passwords

IVE-039 Protect previous (ciphertext) passwords

IVE-040 Protect passwords in dump (core) files

IVE-041 Strong encryption method for passwords

IVE-042 Stored root passwords are encrypted

IVE-043 Root password encryption strength meets policy
IVE-044 Encrypted root passwords are protected (Access Control)
IVE-045 Protect user passwords from brute-force attacks
IVE-046 Maintain user password length suitable to data protected
IVE-047 Maintain user password life suitable to data protected
IVE-048 Enforce user password content (hard to guess)
IVE-049 System user generated passwords

IVE-050 Maintain user password history

IVE-051 Protect root passwords from brute-force attacks
IVE-052 Maintain root password length suitable to data protected

66

Taxonomy | Description

Identifier

IVE-053 Maintain root password life suitable to data protected

IVE-054 Enforce root password content (hard to guess)

IVE-055 System generated root passwords

IVE-056 Maintain root password history

IVE-057 Authentication failures user

IVE-058 Maximum number of authentication failures user

IVE-059 Action taken on exceeding maximum auth failures user
IVE-060 Authentication failures actively monitored user

IVE-061 Authentication failures root

IVE-062 Maximum number of authentication failures root

IVE-063 Action taken on exceeding maximum auth failures root
IVE-064 Authentication failures actively monitored root

IVE-065 Protected (encrypt) authentication info passed b/w components
IVE-066 No yppasswd

IVE-067 No rlogin

IVE-068 No telnet

IVE-069 Encryption for network tx passwords meets policy

IVE-070 All authentication on network is encrypted

IVE-071 Unencrypted passwords have strong Access Control

IVE-072 Unencrypted stored user passwords have strong access control
IVE-073 Unencrypted stored root passwords have strong access control
IVE-085 Protected mechanism for authentication

IVE-086 Mechanism resistant to spoofing

IVE-087 No user credential transmit without notice

IVE-088 Ensure single-use authentication employs single-use authentication data.
IVE-089 Muitiple authentication mechanisms assigned to events
IVE-090 Account Servers admin console login only

IVE-091 Protect Accounts

IVE-092 Protect user accounts

IVE-093 | No stale user accounts

67

Taxonomy | Description

Identifier

IVE-094 Maintain user login hours

IVE-095 Protect User Information

IVE-096 Protect against user name enumeration

IVE-097 Protect root accounts

IVE-098 No stale root accounts

IVE-099 Maintain root login hours

IVE-100 Protect Root Information

IVE-101 No information utilities

IVE-102 No Finger

IVE-103 No Rusers

VE-104 No Rwho

IVE-105 No Whois

IVE-106 Specify Login Environment

IVE-107 Specify data provided during +A

IVE-108 TSF can specify set of actions user can take prior to identification
Maintain authorization and clearance data as well as authentication data

IVE-109 for users

IVE-110 Associate authorization and clearance data with users

Access Control

IVE-111 Must have DAC

IVE-112 DAC with specified users/groups

IVE-113 DAC enforced

IVE-114 Must have MAC

IVE-115 Account permissions

IVE-116 Guest Account permissions meet policy

IVE-117 Guest can login only at console

IVE-118 Domain Guest Account permissions meet policy
IVE-119 Anonymous Account permissions meet policy
IVE-120 Domain Anonymous Account permissions meet policy

68

Taxonomy | Description

Identifier

IVE-121 User Account permissions meet policy
IVE-122 Domain User Account permissions meet policy
IVE-123 Root Account permissions meet policy
IVE-124 Domain Root Count permissions meet policy
IVE-125 Disk Access is fully controlled

IVE-126 Network File System (NFS) use meets policy
IVE-127 NFS is not permitted

IVE-128 NFS has access control

IVE-129 NFS resistant to spoofing

IVE-130 NFS does not export system files

IVE-131 TFS is not permitted

IVE-132 NetBIOS Disk Share use meets policy
IVE-133 NetBIOS shares are not permitted

IVE-134 NetBIOS shares have security

IVE-135 NetBIOS shares have Access Control
IVE-136 NetBIOS shares have write protection
IVE-137 File System meets policy

IVE-138 No FAT

IVE-139 Don't provide file listings

IVE-140 Don't provide directory information

IVE-141 Don't provide directory structure information
IVE-142 Peripherals restricted to console user
IVE-143 Only console user can access CD-ROM
IVE-144 Only console user can access floppy
IVE-145 Must have access control for file reads
IVE-146 External sources cannot bypass local control for file reads
IVE-147 No external file reads via HTML

IVE-148 No external file reads via vb macros (outlook, word, etc)
IVE-149 No external file reads via cgi

IVE-150 No external file reads via applets

69

Taxonomy | Description

Identifier

IVE-151 No external file reads via activeX

IVE-152 No external file reads via cookies

IVE-153 No external file reads via Java

IVE-154 No external file reads via Active Server Page (.asp)
IVE-155 No external file reads via mail uuencode

IVE-156 No external file reads via WWW access

IVE-157 No external file reads via FTP

IVE-158 No external file reads via TFTP

IVE-159 No external file reads via SNMP

IVE-160 No outside control over file read as root

IVE-161 Enforce access control for local reading files
IVE-162 Local user cannot bypass local control for file reads
IVE-163 Local user cannot bypass traverse checking for file reads
IVE-164 Must have access control for file writes

IVE-165 Cannot write executable file with potential execution
IVE-166 External sources cannot bypass local control for file writes
IVE-167 No external file writes via HTML

IVE-168 No external file writes via vb macros (outlook, word, etc)
IVE-169 No external file writes via cgi

IVE-170 No external file writes via applets

IVE-171 No external file writes via activeX write

IVE-172 No external file writes via cookies

IVE-173 No external file writes via Java

IVE-174 No external file writes via Active Server Page (.asp)
IVE-175 No external file writes via mail uuencode

IVE-176 No external file writes via WWW write access
IVE-177 No external file writes via FTP write

IVE-178 No external file writes via TFTP

IVE-179 No external file writes via SNMP

IVE-180 No outside control over file write as root

70

Taxonomy | Description

Identifier ‘

IVE-181 Cannot write potentially malicious executables

IVE-182 Enforce access control for local writing files

IVE-183 Local user cannot bypass local control for file writes
IVE-184 Local user cannot bypass traverse checking for file writes
IVE-185 Access Control over system files

IVE-186 System files controlled by root

IVE-187 Root only can read of system files

IVE-188 Root only can write of system files

IVE-189 External sources cannot bypass local contro! for system file access
IVE-190 Domain Root read of system files only

IVE-191 Domain Root write of system files only

IVE-192 Domain Root read of Domain system files

IVE-193 Domain Root write of Domain system files

IVE-194 Protect system files from external access

IVE-195 No system files on shared drives

IVE-196 Must have access control over executable files

IVE-197 External sources cannot bypass local control for file execution
IVE-198 No external file execution via HTML

IVE-199 No external file execution via vb macros (outlook, word, etc)
IVE-200 No external file execution via cgi

IVE-201 No external file execution via applets

IVE-202 No external file execution via activeX

IVE-203 No external file execution via cookies

IVE-204 No external file execution via Java

IVE-205 No external file execution via Active Server Page (.asp)
IVE-206 No external file execution via mail

IVE-207 No external file execution via WWW (download active content)
IVE-208 No external file execution via FTP

IVE-209 No external file execution via remd

IVE-210 No external file execution via rsh

71

Taxonomy | Description

Identifier

IVE-211 No external file execution via rpc

IVE-212 No external execution via X windows

IVE-213 No external execution via font install

IVE-214 No external execution via IFRAMEs

IVE-215 Control .exe install

IVE-216 Control .exe install from media

IVE-217 Control .exe install from network

IVE-218 Must have access control over execution as root
IVE-219 No CD autorun

IVE-220 No outside control over file execution as root
IVE-221 Warn before executing program from external source
IVE-222 | Warn before executing at VB scripts from MS Office product
IVE-223 Access Control over resources

IVE-224 No external control over resources

IVE-225 Object Permissions _

IVE-226 Must have access control over DCOM use
IVE-227 DCOM can be accessed by administrator only
IVE-228 DCOM can be accessed by administrator at console only
IVE-229 Must have access control over CORBA use
IVE-230 Object Reuse

IVE-231 Protect deleted files

IVE-232 Protect passwords

IVE-233 Protect Clipboard

IVE-234 Access Control enforced for applications
IVE-235 AC for Databases

IVE-236 AC for internal dB read

IVE-237 AC for remote dB read

IVE-238 Protect Network Access

IVE-239 Protect Network Access via Router

IVE-241 protect router config files

72

Taxonomy | Description
Identifier
IVE-242 protect against inadvertent use of multihome devices as routers

Communication Protection

IVE-243 Protect Network Access via Firewall

IVE-244 Protect Firewall

IVE-245 Protect Firewall Configuration

IVE-246 Protect Network Access via Proxy Firewall
IVE-247 Protect Network Access via Application Firewall
IVE-248 Protect network access via modem

IVE-249 Protect from data disclosure over the network
IVE-250 Encryption

IVE-251 All data sent to network encrypted

IVE-252 Generate encryption to meet metric

IVE-253 Protect keys

IVE-254 Protect Data exchange with web saves

IVE-255 Certificates for secure sites

IVE-256 All data sent to secure site encrypted

IVE-257 Protect Access to the data stream

IVE-258 Restrict services that may disclose data
IVE-259 UUCP

IVE-260 Gopher

IVE-261 Ensure Authenticity

IVE-262 Detect/Prevent forged/copied data (spoofing)
IVE-263 Ensure data exchange established with addressed peer entity
IVE-264 Ensure data source is the one claimed

IVE-265 Protect against port hijacking

IVE-266 Enable NT TCP/IP security (restrict port use, protocols, etc)
IVE-267 Protect port use

IVE-268 Ensure data integrity

73

Taxonomy | Description

ldentifier

Node Protection

IVE-269 Protect Availability

IVE-270 Protect against Denial of Service
IVE-271 No DOS programs present
IVE-272 Not vulnerable to DOS programs
IVE-273 No Distributed Denial of Service programs present
IVE-274 Protect against performance degradation
IVE-275 No DOS vulnerabilities

IVE-276 Protect against malicious software
IVE-277 No Trojan horse

IVE-278 No Trojan horses on system
IVE-279 Protect against Trojan Horses
IVE-280 Backdoor

IVE-281 No backdoors on system

IVE-282 Protect against backdoors
IVE-283 No potentially compromised remote control utilities
IVE-284 Virus

IVE-285 Protect against viruses

IVE-286 No viruses present

IVE-287 Protect against worms

IVE-288 No worms present

IVE-289 No potentially malicious software
IVE-290 No password crackers

IVE-291 No keyboard sniffers

IVE-292 No port scanners

IVE-293 No info gatherers

IVE-294 No Privilege Elevation Software
IVE-295 No Buffer Overflow

IVE-296 Detect compromised system
IVE-297 Suspicious Registry settings

74

Taxonomy
Identifier

Description

Operational Procedure

IVE-298 Controlied Operational Procedures

IVE-299 Startup/Shutdown procedure

IVE-300 Data Labeling

IVE-301 ID non-encrypted data sent to web

IVE-302 ID entering secure site

IVE-303 ID mismatched web certificates

IVE-304 ID secure data in browser

IVE-305 ID web redirects

IVE-306 Do not allow data from secure web page to be stored on local hard drive
IVE-307 Backup Procedure

IVE-308 General

IVE-309 No Out Of Date (OOD) OS

IVE-310 No OOD Software

IVE-311 No OOD Software allowing privilege elevation
IVE-312 No OOD Software allowing execution of a program as root
IVE-313 No OOD Software allowing DOS

IVE-314 System Info

IVE-315 No Unreliable SW

IVE-316 No POSIX on NT

IVE-317 No OS/2 on NT

IVE-318 Legal

IVE-319 Intrusion Detection

IVE-320 Port Scan

IVE-321 Enumeration (other then user name)
Auditing

IVE-322 Perform Auditing

IVE-323 Perform System wide auditing

75

Taxonomy | Description

Identifier

IVE-324 Associate auditable actions with identity
IVE-325 Control creation of Audit events
IVE-326 Protect audit files

IVE-327 Restrict access to audit files

IVE-328 Restrict creation of audit events
IVE-329 Don't overwrite audit files

IVE-330 Provide alternate storage for full audit partition
IVE-331 Shut down when Audit full

IVE-332 Do not shut down when Audit is full
IVE-333 Provide sufficient storage for log files
IVE-334 Provide sufficient duration for log files to be saved
IVE-335 Protect auditing mechanism

IVE-336 Audit required events

IVE-337 Audit processes

IVE-338 Audit security processes

IVE-339 Audit system events

IVE-340 Audit backup events

IVE-341 Audit user management

IVE-342 Audit logon/off activity

IVE-343 Audit file/object access

IVE-344 Audit system file/object access

IVE-345 Audit Comms Accesses

IVE-346 Audit Anonymous Logins

IVE-347 Audit HTTP requests

IVE-348 Audit ftp events

IVE-349 Audit active directory events

IVE-350 Audit remote file access (NFS, NetBIOS)
IVE-351 Audit remote access (RAS, etc)

IVE-352 Audit Java

IVE-353 Maintain memory dumps

76

7.2 Condition Table

Table 7.2-1 - Vulnerability Categories and their definitions

Vulnerability Category | Definition

Account Access Access to account information: Passwords, privileges, logon
names, etc. for accounts.

User Access

Access as a non-administrative user of the system.

Administrator Access

Access to administrative privileges.

Privilege Access

Access to portions of the OS that allows privilege elevation.

Password Access

Access to files containing passwords — plaintext or
ciphertext.

Network Access Access to network information, machines, or ports.

File Access Access do the filesystem.

Data Access Access to data being delivered across a network.

Hijack Access Access to applications that allow the external user to take
control of the system.

Backdoor Access Access to the system through backdoor applications.

Information Access

Access to hardware or software information (port
information, OS types, etc.)

Hardware Access Access to devices on the machine (i.e. CD-Rs, Memory,
BIOS, etc.)
Encryption Access to encrypted information.

Process Access

Access to system or user processes.

Compromised

System is already compromised.

TBI

Mapping of a vulnerability that is currently un-catalogued.

7.3 Rule Table

JAT-ID Pre Condition [Post Condition
IVE-001 [Start System
IVE-002 Start Account
IVE-003 (Start Account
IVE-004 [Start ccount

77

IVE-005 IStart Administrator
IVE-006 (Start Administrator
IVE-007 IStart Administrator
IVE-008 [Start Privilege
IVE-009 [Start Privilege
IVE-010 [Start Privilege
IVE-011 (Start Administrator
IVE-012 (Start Account
IVE-013 [Start Account
IVE-014 [Start TBI

IVE-015 [Start IAccount
IVE-016 [Start Account
IVE-017 Start Account
IVE-018 I(Start Account
IVE-019 [Start Account
IVE-020 Start Account
IVE-021 [Start Account
IVE-022 [Start Account
IVE-023 [Start Account
IVE-024 [Start IAccount
IVE-025 [Start Account
IVE-026 (Start Account
IVE-027 [Start Account
IVE-028 [Start Account
IVE-029 [Start Administrator
IVE-030 (Start Administrator
IVE-031 [Start Account
IVE-032 [Start Encryption
IVE-033 Start Password
IVE-034 [Start Password
IVE-035 [Start Password
IVE-036 [Start Password
IVE-037 (Start Password
IVE-038 [Start Password

78

IVE-039 [Start Password
IVE-040 Start Password
IVE-041 Start Password
IVE-042 [Start Password
IVE-043 Start Password
IVE-044 Start Password
IVE-045 [Start Password
IVE-046 |Start Password
IVE-047 Start Password
IVE-048 Start Password
IVE-049 Start Password
IVE-050 |Start Audit
IVE-051 (Start Password
IVE-052 (Start Password
IVE-063 [Start Password
IVE-054 Start Password
IVE-055 (Start Password
IVE-056 [Start Password
IVE-057 (Start Account
IVE-058 Start Account
IVE-059 [Start Account
IVE-060 [Start Account
IVE-061 [Start Account
IVE-062 (Start Account
IVE-063 [Start Account
IVE-064 (Start Account
IVE-065 [Start Data
IVE-066 (Start Account
IVE-067 [Start Account
IVE-068 [Start Account
IVE-069 [Start Password
IVE-070 (Start Password
IVE-071 (Start Password
IVE-072 (Start Password

79

IVE-073 |Start Password
IVE-074 [Start TBI
IVE-075 [Start TBI
IVE-076 [Start TBI
IVE-077 [Start TBI
IVE-078 [Start TBI
IVE-079 [Start TBI
IVE-080 (Start TBI
IVE-081 [Start TBI
IVE-082 [Start TBI
IVE-083 (Start TBI
IVE-084 [Start TBI
IVE-085 (Start Account
IVE-086 [Start Account
IVE-087 [Start Account
IVE-088 |[Start Account
IVE-089 iStart Account
IVE-090 (Start Administrator
IVE-091 [Start Account
IVE-092 (Start Account
IVE-093 |[Start Account
IVE-094 [Start IAccount
IVE-095 |[Start Account
IVE-096 [Start Account
IVE-097 [Start Account
IVE-098 [Start Account
IVE-099 iStart Account
IVE-100 (Start Account
IVE-101 (Start Account
IVE-102 {Start Account
IVE-103 [Start Account
IVE-104 [Start Account
IVE-105 (Start Account
IVE-106 [Start Account

80

IVE-107 [Start Account
IVE-108 [Start Account
IVE-109 |[Start Account
IVE-110 Start Account
IVE-111 [Start Account
IVE-112 (Start Account
IVE-113 [Start Account
IVE-114 Start Account
IVE-115 [Start Account
IVE-116 {Start Account
IVE-117 [Start Account
IVE-118 [Start Account
IVE-119 [Start Account
IVE-120 [Start Account
IVE-121 [Start Account
IVE-122 [Start Account
IVE-123 IStart Account
IVE-124 [Start Account
IVE-125 {Start Hardware
IVE-126 [Start Network
IVE-127 [Start Network
IVE-128 (Start Network
IVE-129 [Start Network
IVE-130 [Start Network
IVE-131 [Start Network
IVE-132 [Start Hardware
IVE-133 [Start Hardware
IVE-134 [Start Hardware
IVE-136 [Start Hardware
IVE-136 [Start Hardware
IVE-137 [Start File
IVE-138 [Start File
IVE-139 [Start File
IVE-140 [Start File

81

IVE-141 Start File
IVE-142 Start Hardware
IVE-143 Start Hardware
IVE-144 Start Hardware
IVE-145 [Start File
IVE-146 (Start File
IVE-147 |Start File
IVE-148 [Start File
IVE-149 (Start File
IVE-150 [Start File
IVE-151 [Start File
IVE-152 [Start File
IVE-153 [Start File
IVE-154 [Start File
IVE-155 Start File
IVE-156 [Start File
IVE-157 [Start File
IVE-158 [Start File
IVE-159 (Start File
IVE-160 [Start File
IVE-161 * [Start File
IVE-162 (Start File
IVE-163 [Start File
IVE-164 [Start File
IVE-165 Start File
IVE-166 [Start File
IVE-167 (Start File
IVE-168 [Start File
IVE-169 (Start File
IVE-170 Start File
IVE-171 Start File
IVE-172 [Start File
IVE-173 [Start File
IVE-174 [Start File

82

IVE-175 [Start File
IVE-176 [Start File
IVE-177 [Start File
IVE-178 [Start File
IVE-179 (Start File
IVE-180 [Start File
IVE-181 [Start File
IVE-182 [Start File
IVE-183 [Start File
IVE-184 [Start File
IVE-185 |Start File
IVE-186 [Start File
IVE-187 [Start File
IVE-188 [Start File
IVE-189 [Start File
IVE-190 [Start File
IVE-191 [Start File
IVE-192 |Start File
IVE-193 [Start File
IVE-194 [Start File
IVE-195 [Start File
IVE-196 [Start Hijack
IVE-197 [Start Hijack
IVE-198 [Start Hijack
IVE-199 Start Hijack
IVE-200 [Start Hijack
IVE-201 [Start Hijack
IVE-202 [Start Hijack
IVE-203 [Start Hijack
IVE-204 [Start Hijack
IVE-205 |Start Hijack
IVE-206 [Start Hijack
IVE-207 (Start Hijack
IVE-208 [Start Hijack

83

IVE-209 'Start Hijack
IVE-210 [Start Hijack
IVE-211 [Start Hijack
IVE-212 (Start Hijack
IVE-213 [Start Hijack
IVE-214 |Start Hijack
IVE-215 iStart Hijack
IVE-216 [Start Hijack
IVE-217 [Start Hijack
IVE-218 (Start Hijack
IVE-219 (Start Hijack
IVE-220 |[Start Hijack
IVE-221 [Start Hijack
IVE-222 [Start Hijack
IVE-223 [Start TBI
IVE-224 |Start TBI
IVE-225 |[Start Process
IVE-226 |[Start Process
IVE-227 |[Start Process
IVE-228 |[Start Process
IVE-229 |[Start Process
IVE-230 (Start Process
IVE-231 [Start File
IVE-232 [Start Password
IVE-233 (Start File
IVE-234 |Start File
IVE-235 [Start File
IVE-236 [Start File
IVE-237 |Start File
IVE-238 |[Start Network
IVE-239 [Start Network
IVE-240 |[Start TBI
IVE-241 [Start Hardware
IVE-242 [Start Hardware

84

IVE-243 [Start Network
IVE-244 Start Network
IVE-245 [Start File
IVE-246 [Start Network
IVE-247 {Start Network
IVE-248 [Start Network
IVE-249 (Start Data
IVE-250 [Start Data
IVE-251 (Start Data
IVE-252 [Start Data
IVE-253 Start Data
IVE-254 [Start Data
IVE-255 (Start Data
IVE-256 [Start Data
IVE-257 [Start Data
IVE-258 IStart Data
IVE-259 [Start Data
IVE-260 [Start Data
IVE-261 (Start Data
IVE-262 Start Data
IVE-263 [Start Data
IVE-264 (Start Data
IVE-265 Start Data
IVE-266 [Start Data
IVE-267 [Start Data
IVE-268 [Start Data
IVE-269 (Start Process
IVE-270 Start Process
IVE-271 [Start Process
IVE-272 [Start Process
IVE-273 [Start Process
IVE-274 [Start Process
IVE-275 [Start Process
IVE-276 [Start Hijack

85

IVE-277 [Start Hijack
IVE-278 [Start Compromised
IVE-279 [Start Hijack
IVE-280 [Start Backdoor
IVE-281 (Start Backdoor
IVE-282 Start Backdoor
IVE-283 (Start Hijack
IVE-284 (Start Hijack
IVE-285 [Start Hijack
IVE-286 [Start ICompromised
IVE-287 (Start Hijack
IVE-288 [Start ICompromised
IVE-289 [Start Compromised
IVE-290 [Start Compromised
IVE-291 (Start Compromised
IVE-292 [Start ompromised
IVE-293 [Start Compromised
IVE-294 [Start ICompromised
IVE-295 [Start Process
IVE-296 Start ICompromised
IVE-297 (Start Compromised
IVE-298 Start Account
IVE-299 [Start Account
IVE-300 (Start Data

IVE-301 [Start Data

IVE-302 [Start Data

IVE-303 |Start Data

IVE-304 [Start Data

IVE-305 (Start Data

IVE-306 [Start Data

IVE-307 [Start TBI

IVE-308 [Start TBI

IVE-309 [Start System
IVE-310 [Start System

IVE-311 [Start System
IVE-312 [Start System
IVE-313 [Start System
IVE-314 Start System
IVE-315 [Start System
IVE-316 (Start System
IVE-317 [Start System
IVE-318 Start TBI
IVE-319 (Start TBI
IVE-320 [Start TBI
IVE-321 [Start TBI
IVE-322 |Start Audit
IVE-323 [Start Audit
IVE-324 [Start Audit
IVE-325 [Start Audit
IVE-326 [Start Audit
IVE-327 (Start Audit
IVE-328 [Start Audit
IVE-329 Start Audit
IVE-330 (Start Audit
IVE-331 [Start Audit
IVE-332 [Start Audit
IVE-333 [Start Audit
IVE-334 (Start Audit
IVE-335 (Start Audit

- IVE-336 [Start Audit
IVE-337 Start Audit
IVE-338 [Start Audit
IVE-339 [Start Audit
IVE-340 [Start Audit
IVE-341 [Start Audit
IVE-342 [Start Audit
IVE-343 (Start Audit .
IVE-344 Start Audit

87

IVE-345 [Start Audit
IVE-346 (Start Audit
IVE-347 [Start Audit
IVE-348 [Start Audit
IVE-349 [Start Audit
IVE-350 [Start Audit
IVE-351 (Start Audit
IVE-352 [Start Audit
IVE-353 [Start Audit

7.4 CVE Information

ICVE

ICVE-1998-0012

ICVE-1999-0016

CVE-1999-0077

CVE-1999-0079

CVE-1999-0103

ICVE-1999-0103

ICVE-1999-0103

CVE-1999-0116

CVE-1999-0116

ICVE-1999-0128

ICVE-1999-0128

ICVE-1999-0163

ICVE-1999-01563

ICVE-1999-0177

CVE-1999-0177

CVE-1999-0178

CVE-1998-0191

ICVE-1998-0224

VE-1999-0224

88

ICVE-1999-0225

ICVE-1999-0225

ICVE-1999-0227

ICVE-1999-0227

CVE-1999-0228

CVE-1999-0228

ICVE-1999-0233

CVE-1999-0233

CVE-1999-0233

CVE-1999-0265

ICVE-1999-0265

ICVE-1999-0274

CVE-1999-0274

CVE-1899-0275

ICVE-1999-0275

CVE-1999-0278

CVE-1999-0281

ICVE-1999-0288

CVE-1999-0292

CVE-1999-0292

ICVE-1999-0344

ICVE-1999-0344

CVE-1899-0348

CVE-1999-0349

ICVE-1999-0366

CVE-1998-0372

ICVE-1999-0376

ICVE-1998-0376

CVE-1999-0382

CVE-1999-0384

CVE-1999-0385

CVE-1998-0407

ICVE-1999-0449

VE-1999-0458

ICVE-1999-0468

ICVE-1999-0496

ICVE-1999-0496

ICVE-1999-0513

CVE-1999-0513

ICVE-1999-0669

ICVE-1999-0700

ICVE-1999-0701

CVE-1998-0701

CVE-19989-0715

ICVE-1999-0716

CVE-1999-0717

ICVE-1999-0721

ICVE-1999-0723

ICVE-1998-0725

ICVE-1999-0725

ICVE-1999-0726

CVE-1899-0728

ICVE-1999-0736

CVE-1999-0737

CVE-1999-0738

ICVE-1999-0739

ICVE-1999-0755

ICVE-1999-0766

ICVE-1999-0777

ICVE-1999-0790

CVE-1999-0793

CVE-1999-0794

ICVE-1999-0802

CVE-1899-0839

ICVE-1999-0858

ICVE-1999-0861

ICVE-1999-0867

ICVE-1999-0869

90

ICVE-1999-0870

ICVE-1999-0871

CVE-1999-0871

ICVE-1999-0874

ICVE-1999-0876

CVE-1999-0876

ICVE-1999-0877

CVE-1999-0886

ICVE-1999-0891

ICVE-1999-0898

ICVE-1999-0898

ICVE-1999-0899

CVE-18989-0909

CVE-1999-0917

CVE-1999-0951

CVE-1999-0969

ICVE-1999-0969

CVE-1999-0980

CVE-1999-0981

ICVE-1999-0994

ICVE-1999-0995

CVE-1999-0999

CVE-1999-1918

CVE-2000-0025

CVE-2000-0089

ICVE-2000-0097

ICVE-2000-0098

CVE-2000-0121

CVE-2000-0156

ICVE-2000-0162

ICVE-2000-0200

ICVE-2000-0202

CVE-2000-0211

ICVE-2000-0232

CVE-2000-0246

ICVE-2000-0304

CVE-2000-0304

CVE-2000-0305

ICVE-2000-0323

CVE-2000-0327

ICVE-2000-0328

CVE-2000-0329

ICVE-2000-0331

ICVE-2000-0377

ICVE-2000-0403

CVE-2000-0404

ICVE-2000-0408

CVE-2000-0419

ICVE-2000-0464

ICVE-2000-0464

CVE-2000-0567

CVE-2000-0597

ICVE-2000-0597

ICVE-2000-0603

CVE-2000-0630

ICVE-2000-0630

ICVE-2000-0631

CVE-2000-0637

CVE-2000-0654

ICVE-2000-0654

CVE-2000-0673

ICVE-2000-0768

ICVE-2000-0886

CVE-2000-1147

ICVE-2001-0006

CVE-2001-0016

CVE-2001-0018

CVE-2001-0047

92

ICVE-2001-0083
ICVE-2001-0092
CVE-2001-0096
ICVE-2001-0096
ICVE-2001-0145

7.5 Fuzzy Set Contributions

This table is the fuzzy membership functions for the three fuzzy sets: Data_End, User_End,
and System_End.

Table 7.5-1 - Fuzzy Membership Functions

IDEA Vulnerability Categories | Contributions
Account Access .3 - User

.7 - System
Administrator Access 1.0 - System
Backdoor Access 4 - User

.6 - System
Data Access .3 - Data

.7 - User
File Access 1.0 - User
Hardware Access 1.0 - Data
Hijack Access .6 - User

4 - System
Information Access 1.0 - Data
Network Access .4 - Data

.3 - User

.3 - System
Password Access 1.0 - System
Privilege Access 1.0 - System
Process Access .3 - User

.7 - System

93

User Access 1.0 - User
Compromised 1.0 — System
Encryption 4 —Data

.2 — User

.4 — System
TBI .3 — Data

.3 —User

.4 - System

94

8 Appendix B — XML Information

This appendix provides background information on XML as wali as a rationale as to its
selection as an interface-protocol for the FuzzyFusion™ component.

8.1 XML - A Better Component Protocol

Modern software applications are increasingly being built by assembling components.
Components are typically binary units that provide services, and are often developed in
isolation from the applications they will eventually run within. Components speak and are
spoken to only through their interfaces, which are specified by an Interface Definition
Language, or IDL. The final piece of the puzzie is the ORB (Object Request Broker), where
a client goes to enlist the services of a component. The ORB enables distribution and
location transparency (in other words, the client doesn’t need to know where the
component is running) by using special objects called proxies and stubs, which are
responsible for intercepting and forwarding messages intended for components and their
clients. The ORB is typically provided as part of a larger COTS (Commercial-Off-The-Shelf)
package, while the proxies and stubs are typically generated from the IDL. These three
parts form the part of the architecture called the middleware.

interface A A client applicationl
A component —6(
\ Interface A

[Stub | I Proxy

Figure 8.1-1 — Basic middleware architecture

A component O(,..-{A client application|
interface

A

Figure 8.1-2 - A simplified view

This has proven to be a very fiexible and powerful architecture over the past several years,
and is essentially the same in COM/COM+, CORBA, and Enterprise JavaBeans, the
leading component models. Benefits of component-based architectures include:

¢ Components, while sometimes difficult to develop, are relatively easy to integrate
into applications

o Interfaces allow clients and components to upgrade concurrently and (usually)
gracefully

e Components can be developed in virtually any programming language (with an
exception being JavaBeans)

95

e Components provide location transparency

o Components support services such as security, transaction management and
resource pooling

Agent technology adds other benefits, such as the ability for a component-agent to change
the machine where it is physically executing at run time. In summary, components enable
scalable, robust and flexible applications. However, the technology does have its
limitations. First, many organizations have components developed for multiple component
models, and these different models are not immediately compatible. This problem has been
partially addressed by “bridges” between dissimilar ORBs.

(defined in COM IDIl}l (defined in CORBA IDL)
% | Interface A /f client application]
A component 3

\ Interface A

| comstwb | [cORBA Proxy|

R
_\\

{corea ors|

| comors k-—-—{COM-CORBA Bridgel¢

Figure 8.1-3 — Bridge between two dissimilar component models

Secondly, this architecture requires that an ORB is running on every machine where there
is a client or server. This is especially an issue with web-enabled systems and nonstandard
user interfaces such as PDAs. Initially it was thought that the solution was to add the ORB
to the browser, as Java and ActiveX (COM under a different name) have done. However,
security concerns have led many organizations to disable support for running these
components in their browsers. Web-based GUIs tend to favor the simpler HTTP (HyperText
Transfer Protocol) over the heavier-weight ORB protocols, because of HTTP’s near-
universal support, browser independence, and ease passing through server firewalls.
Before that last bit scares you too much, recall that HTTP also has a very mature set of
security frameworks built for it (such as secure connections and client authentication). So
for a client that can only use HTTP, how does it access the services of a component?

Finally, assuming all these obstacles are overcome, what happens if the interfaces don’t
exactly agree? This is a very real situation caused by client and server version clashes, and
components provided by different vendors. One solution is to put an intermediary, or
adapter, between the client and component, but that solution still is limited in that it
converts one exact interface to another exact interface. The adapter needs as many flavors
as there are combinations of interfaces it has to adapt.

% A component __O(A to A’ Adapte! O -«l; client applicatioﬂ

Interface Interface
A A

Figure 8.1-4 — Interface conflict with adapter solution

96

8.2 XML

Many solutions to these problems are provided by XML. XML, the Extensible Markup
Language, is a universal syntax for describing and structuring data independent from the
application logic. XML can be used to define unlimited languages for specific industries
and applications. XML promises to simplify and lower the cost of data interchange and
publishing in a Web environment. XML is a text-based syntax that is readable by both
computer and humans. XML offers data portability and reusability across different
platforms and devices. It is also flexible and extensible, allowing new tags to be added
without breaking an existing document structure. XML was originally developed to provide
more flexibility in formatting and displaying information on web pages. it is similar to HTML
in that it is text-based, and uses tags to “mark up” text. The key difference is that HTML has
fixed tags, such as for bold text, while XML allows user-defined tags.

97

<?xml version="1.0" 2>
<!DOCTYPE PERSON SYSTEM “person.dtd”>
<PERSON AGE="19” GENDER=" female” HAIR COLOR="brown”>
<NAME>
<FIRST>Jane</FIRST>
<LAST>Doe</LAST>
</NAME>
<ADDRESS>
<STREET1>123 Mockingbird Lane</STREET>
<CITY>Anytown</CITY>
<STATE>New Jersey</STATE>
</ADDRESS>

</PERSON>

Figure 8.2-1 — An XML Document

In the above document, the tags PERSON, AGE, GENDER, NAME, etc. are all user-defined.
The defined tags for an XML document define a vocabulary, which in this example is
contained in a separate document called “person.dtd”. DTD stands for “Document Type
Definition”. Because the tags (i.e. <STATE>) are included as text with the data (i.e. New
Jersey), this is known as self-describing data. In other words, it is easier for a person or a
machine to interpret what the contents mean. :

- Because of the simplicity and flexibility of XML, as well as the fact that it is an open
standard, it has gained massive popularity, and has been appropriated for uses far beyond
its original intent. One of these uses is messaging between components and clients. This is
the approach taken by IDEA. in this approach, a client and a component both speak XML,
and while XML is technically the interface between the two, the real interface is the

vocabulary the two agree on.
Under-
stands XML
\/—-"- Vocabulary A \\

XML

Interf -
% A component _n_bzie;—{l\ client application|

K_ XML docs
passed

across

Figure 8.2-2 — XML Interface

98

8.2.1.1 XML as component interface

Unlike typical component interfaces, which are specific to components as well as to the
component model, an XML interface is very simple - it doesn’t know about any application-
specific vocabulary. Because of this, the software architect can implement this interface in
many ways, as appropriate to the component models (or lack thereof). Let's examine some
of the challenges posed by components and how XML addresses them.

8.2.2 Dissimilar Component Models

Recall that in the previously discussed solution, a bridge would sit between the two ORBs
and translate. Because of the complexity of inter-ORB communication, we would seldom
want to write a bridge; rather we would look for a COTS product. Assuming we could find
one, we now have three COTS products that all have to be kept current and compatible.
This is no trivial issue, especially when you consider the features being added and modified
by middleware all the time (such as asynchronous messaging, transaction support, etc.). in
many cases we'll still end up writing “glue code” to bridge the gaps.

Bridging different component models can be easily done by creating a simple XML bridge.
Why is this bridge any simpler than the bridge between ORBs? Since the format of XML
documents is independent of application messages, a bridge can be created which simply
passes an XML document from one component model to another. In addition, as the bridge
is not COTS and is likely not using any ORB-specific functionality, it will usually not be
necessary to create a new bridge when the ORB versions change. Is this bridge glue code?
Sure, but it's not very much code, and often it's better to write a little glue code than to
hardwire COTS products together and put yourself at their mercy.

(defined in Only

. "] understands
COM IDL) \ I XML | (defined in
/ ~~~| CORBA IDL)

\ / /

\ 1

W ¥ {

A component ‘——O(~---|XML Document Bridge]——ée ------ {A client applicationl

XML XML

Interface Interface

Figure 8.2-3 — XML Bridge
8.2.2.1 XML as bridge between component models

8.2.3 Lack of ORB Support

Similarly, XML removes the need for an ORB to be running on every platform. Since XML
was developed as a web technology, it is recognized by HTTP already, and web
development tools are well equipped to handle it. Here is an example architecture using a
serviet to pass XML to and from a component:

99

ML Adapter Servletll(htto 4 Web client, PDA, etc.

PN (no ORB)
\ \
\ N |
A component —O o X‘I;AaLs::gs
XML across
Interface

Server running an ORB

Figure 8.2-4 — XML Adapter

8.2.3.1 XML from web client to ORB-hosted component

In the case where a component is packaged as a mobile agent (such as certain proposed
deployments of IDEA), the use of XML to talk to the agent is a natural fit. Simplifying the

interface by using XML reduces the amount of code necessary to handle agent
communications:

Agent S
XML Agent Wrapper pn?to ool IDEA Master Application
iy
Agent core ———() ‘\\ Agent cod
XML — & XML as
Interface agent state
Network node

Figure 8.2-5 —~ XML Agent

8.2.3.2 XML from master application to mobile agent

8.2.4 Interface Clashes

As we saw before, if a client and component expected different interfaces, the only real
solution was a specific adapter. But there is a deeper problem with fixed (or “frozen”)
interfaces. Specifically, a component interface, once published, is not supposed to change’.
This means the number and types of the parameters to each operation are “hard-coded”.
This is often held up as one of the best things about components, as stable interfaces
make the architecture as a whole much more stable. However, change is inevitable, and
interfaces are no exception, so component providers will occasionally introduce a newer
version. When this happens they may or may not continue to support the old one (COM
literature insists that they do, but there is nothing forcing them to). Ultimately, frozen
interfaces cut in both directions: because of the work and coordination required, interfaces
are changed less often than they perhaps should (putting more burden on the clients and

1 Incidentally, both COM and CORBA provide mechanisms for dynamic component interfaces to be discovered at run time and interpreted. However,

these are more for the convenience of non-typed clients (scripting languages) than for the ability to change the interfaces at run time. Aithough it can be
done, it is far from trivial.

100

components to deal with change), and when they are changed, surprise — there is lots of
work and coordination for the clients and components.

However, the XML paradigm makes interface clashes much less of a problem. The primary
reason is that XML takes the detail of the interface out of the interface protocol. The
protocol is merely XML, which is very stable, so there is no real burden with freezing the

interface. For an example, look at a typical operation on an interface (in a simplified IDL
syntax):

interface IEmployeeServer {
bool AddEmployee (
int emplD,
string firstName,
string middleName,
string lastName,

string ssn);

Figure 8.2-6 — Example of IDL

Both clients and the components that realize this interface are locked into the exact number

and type of parameters. If the component developer wanted to add a street address to the
employee, he or she would have three choices:

e Coordinate with all current clients and other components that realize the interface,
and add the address parameters to the original operation. All clients and
components would need updating.

e Add a new operation like “AddEmployeeWithAddress” — this would not break clients,
but they would all have to be recompiled. Components, however, would need to
support the new operation. This technique is essentially a hack — it would quickly
make the interface complex and hard to maintain.

¢ Add a new interface, for example “IEmployeeServer2”, containing everything that is
in IEmployeeServer, with the one changed operation. This causes the least pain
initially in that neither existing clients nor existing components would need to do
anything — only clients and components that wanted to use the new interface would
change. However, they would probably need to write code to deal with both
interfaces. The problems with this solution are more long-term: obviously it can’t be
done very often (when Microsoft supercedes any of its published interfaces, if at all,
they only do it once), and it creates a maintenance problem that continues
indefinitely.

By contrast, here is an XML interface:

interface IXMLControlInterface {

/* Returns result as XML doc */

101

string AcceptCommand (

string xmlDoc);

Figure 8.2-7 — Example XML Iinterface

and the equivalent command, sent as an XML document:

<?xml version="1.0" ?>
<!DOCTYPE EMPLOYEE SERVER SYSTEM “Employee_Server.dtd”>
<COMMAND_ ADD_EMPLOYEE>
<EMPLOYEE ID="12345">
<NAME>
<FIRST>Jane</FIRST>
<MIDDLE>Q.</ MIDDLE>
<LAST>Doe</LAST>
</NAME>
<SSN>123-45-6789</SSN>
</EMPLOYEE>
</COMMAND ADD EMPLOYEE>

Figure 8.2-8 — Example XML Document

In this example, the street address could be added to the DTD (as a non-mandatory field),
and each client and component could upgrade at any time, or not at all. Here are the
effects:

e Non-upgraded clients would not need to do anything. They could continue to send
the old command format.

e Upgraded clients would simply send the new command format. They would not
need to know if the component they are talking to has been upgraded or not.

¢ Non-upgraded components would not need to do anything. If they are sent a
command with an address, typical XML practice is to disregard any unexpected
data.

e Upgraded components could look for an address, and if they find none, they could
just enter a blank one. Alternatively, an adapter could be placed between clients
and components as discussed earlier. This adapter would add street address fields
to any commands that needed them, removing the burden from the upgraded
components.

This flexibility of vocabulary is inherent in XML and is probably the primary reason for its
popularity.

102

In summary, the simplicity, flexibility, and wide support of XML make it a natural choice for
gluing together complex systems out of heterogeneous components. It is a powerful yet
easy to use tool for creating robust software architectures.

103

9 Appendix C- Prototype Instructions

9.1 Using DTS to Import Scanner Test Data from an Access Database Into an

MSDE Database

This section describes how to import STAT® Scanner Test Data from the scanner’s
Access database into IDEA’'s MSDE database.

1. Start the DTS import wizard.
2. Set the Access database as the source database.

3. Enter the path to the Access database and click “Next”.

4 DTS Wizard K|

Choose a Data Source

\Where would you like to copy data from? You can copy data from any of the sources listed
below. Choose one of the following sources.

Sourge: , IQ Microsoft Access

Eile name:
Usamame;

Passwoid:

Database. You may nead to provide a valid user name and password.

" n order to connect to "Miciosoft Access”, you must fist choosa 8
. The database password can be specified in the Advanced options.

=

{I:\SDF\Option 2\Test Data\db1.mdb

]

< Back

Next>

Cancel l

4. Set the Destination database as Microsoft OLE DB Provider for SQL Server.

104

5. Create a new database with the name “testdata” and click “Next”.

DTS Wizard

Choose a Destination

Where would you like to copy data to? You can copy data to any of the destinations fiste 5
below. Choose one of the following destinations.

6. Choose “Copy table(s) from source database” and click “Next”.
Specify Table Copy or Query
Specify whether to copy one or more tables or the results of a query from the data source.

105

7. Check all three tables and click “Next”.

2, DTS Wizard

Select Source Tables

You can choose one or more tables to copy. You can copy the schema and data as itis in the
source of click [...) to transform the data using ActiveX scripts.

Tablefs)

Source Tabls | Destination Table | Transfo
¥ STAT Scanner-produced Yulnerabilities [testdata).[dbo].[STAT ... "
W Taxonbmy to IAT
£7% Tool to Takonamy

«

[testdata).[dbo].[Taxon... ;

B [testdatal.{dbo].[Tool to... n

GelsrAl | DesslectAn |

< Back

A

8. Make sure “Run immediately” is checked and click “Next”.

“ DTS Wizard

Save. Schedule and Replicate Package
Specify if you want to save this DTS package. You may also replicate the data or scheduls the.
package to be executed at a later time.

- W}m sttt s s o

[~ Create DTS package for rsplication
T~ Schedule DTS package for later exscution

S

T Save DTS Package

Sm g oo o st s s L s 028 a4

Newt> Cancel]

106

9. Click “Finish”.

Completing the DTS Wizard

You have successfully specified then information necessary
to copy, transform, or ransfer the data. Review the
selections below and click on FINISH to execute

Summary:

outce: Microsolt Access s
* b_!nczosnftdet 400LEDB F’mwdel :

10. If all operations have a green check next to them, as follows, then the import was
successful.

Transferring Data

Complete [5555] -

> , Complete [353]
- Copy Data from Tool to Taxonomy to [testdata] [dbo] [Toolt .Complete [21 40] B

11. Click “Done” to exit.

107

12. Open SQL Enterprise Manager.

13. Register the SQL Server if it has not yet been registered.

14. Expand the tree until you find the database named “testdata”.
15. Expand the tree again and find “Views”.

16. Right click on “Views” and select “New View".

108

17. Cut and paste the following SQL statement into the SQL window.

SELECT dbo.[Taxonomy to IAT].IVE_ID, dbo.[STAT Scanner-produced
Vulnerabilities].[CVE ID], dbo.[STAT Scanner-produced
Vulnerabilities].[Machine Name], dbo.[STAT Scanner-produced
Vulnerabilities].[Scan Date]
FROM dbo.[Tool to Taxonomy] RIGHT OUTER JOIN
dbo.[STAT Scanner-produced Vulnerabilities] ON
dbo.[Tool to Taxonomy].[Tool Vulnerability] = dbo.[STAT Scanner-
produced Vulnerabilities].[Tool Vulnerability] RIGHT OUTER JOIN
dbo.[Taxonomy to IAT] ON dbo.[Tool to Taxonomy].Taxonomy =
dbo.[Taxonomy to IAT].Taxonomy

it SBL Server Enterprise Manager ‘

s;; %ﬂ SQL Server Group
=@ 5C158150 (Windows
&

| B8 adpiSQL
: 23 Diagrams}:
-2 Tables (P ol e S

e Views hic . Wb ’

Stored P :

-34% Users U . . R e
-9 Rules : :

-{EZ] Detaults
€3 User Defi

F-) master

dbo. [Taxonomy to IAT].IVE_ID, dbo.
dbo. [STAT Scanner-prodi

dbo. [Tool to Taxonomy] RIGHT OUT
dbo. [STAT Scanner-prodiu

dbo. [Tool to Taxonomy

dbo. [Taxonomy to IAT] (-

Ern i)

[

3!
L‘.LI faa)

m

Roles

FTJ %_.j Data Transformat_
#-{J Management
L'} {77 Security
@71 Sunport Sanvices

109

18. Save the new view as “GetTestData”.

* Save this view as: rT

| GetTestData
Cancel

110

9.2 IDEA XML Generator

This section describes using the IDEA XML Generator to generate test XML for the
FuzzyFusion™ component.

Step 1.

Enter the correct connection settings
and click the “Connect” button.

Step 2.

Select the “Node Name” and
“Scan Date".

sl
- |
C —

DE XML Generator

= r Database Connection Settings B e
Server Name 1 Node Name
Local ! -
{iLocal [NG ~]
Database ScanDate
ltestdata 1823/01 3:09:00 PM
’ User Narne S - e—— S |
[sa 7 Output Criteria - -
| | Ouiput File
Password : |C: \temphout1.xm!
l ™ Random Data
: Status oK
- |Database connection established]
. JJ Exit

112

Step 3.

Enter the path for the output file
and either enter “POE" and “Trust”
values or check the “Random” box.

|- IDEA XML Generator

e!atonﬁn!wa
' Noda ﬂma i
JNT43Ct

ScanDate
[6/3/01 303:00PM v}

C:\tempout! . xml
" ¥ ReandomData,

Step 4. Click “OK” to
create XML output.

Note: If you have not yet followed the procedure for importing test data then this program
will not run. See the document “Using DTS to Import Scanner Test Data from an Access
Database Into an MSDE Database.doc’.

113

9.3 IDEA Demo Interface
Overview of the IDEA Demo GUI

Import File: Browse for an
input data file the choose
import to upload data into the
IDEA database for analysis.

Export File: Path to place the
export file in.

IDEA icon

'a IDEA

Here additional tools
can be added to those
included in the import
data for analysis to be
run on. Up to a three-
digit i\nteger value.

Reset DB: Resets the database
tables used to store imported data 1
analysis.

Reset Tools: Resets the list of tool
stored in memory, used for analysis

Reset All: Performs all the function
of both Reset DB and Reset Tools.

; “d U% N s s g st e ot
Resst DB |

Resst Tools |

Starts th

analysis

i

Here the results of the analysis are
displayed. The results are also
written to the export file path in two
forms, an XML document (.xml)
and a comma delimited file (.csv).

Informational messages
about the status of the current
or last operation performed.

114

Progress bar

10 Appendix D — IDEA Architecture
The IDEA Architecture document produced during the initial effort is attached.

11 Appendix E — Meta-Language

The Meta-Language document, is attached.

12 Appendix F — IDEA: An Information Superstructure

The Information Superstructure document is attached.

115

Appendix D

DEA Software Architecture Document

116

Table of Contents

I S0P ettt ettt a bbb et b e s st s ee s e e st s ena s st eteteares 1
2 Graphical Conventions Used in this DOCUMENtc.cceeiiiinniiine et reennnes 2
2.1 PACKAZEcuiiriiiieree ettt ettt b et e a st et e te et eateaen s Re bR e e b et e b e ne st b s e s e e enenenes 2
2.2 ROSe MOdel DESIZN NOLEScovevieiieiereriiririerirreeteesteese e st et eaeba e eseseesen et ese et et ebsseasesesesetesessasassssene 2
2.3 Package Dependency or INStantiation............cocouevrretrintnsnenniciennnnne et sse st veee s sssss s sens 2
24 USE CASE ...ooevereeeenieteeet ettt ettt ettt et b e b e s s e e s e et aseabesba st beersets s eneaberensetensebenseesbens 3
2.5 SequenCe DIAGTAIMNSc.cueuiieiiririeeee ettt ettt et s sa et e e e e babes et et e s et et enesetasenesebesasasnsasrerons 3
2.6 Class DIAGIAMS ..coveuruiiiiniiiceste ettt senassa st s e b bbbt esessene s e ss et s sesasanssaeresateesenens 3
2.7 Collaboration DIAGIAINIS.........cceueueirierieeseseseiecaeieesssaesscses e teresesesss s sessseasssssstssesresstsemsestsseesssensaresrasaeens 4
2.8 SHALE DIAGTAMIS....ccciiieieiiirir it tren et ettt sttt t e se e b et as bbb esste bbb es e seseretesenebesenesrnantsaenesetes 4
2.9 Activity Diagrams.........cccunuu.. e er et bt s e r e e e r e sat e et e et e be st et e b et e re s ere b et eae e st eneneane e 5
3 ATCHIEEOIUTE Lottt ettt sttt e n b a et st e b enass et ee st eseeeensassasssmsenterenneetasran 6
3.1 SOFIWATE ATCRILECIUIE......ucvieieieiriitie s sttt ses st s et sesser s es et eseresesesssesre e sasssse st estneassearasasas 6
3.2 SyStem AFCHILECIUIEo.oiietrmrciieectreeeeie ettt tassss e e s s ebes b et babe s e e besesessesessasssassesesenennrenssnsassens 16
4 System Analysis Use Cases....... FrEeae e eeteeat et s e b S e ae e e s et e R e Rt ekt e bt e et e Rt eh b et eRa et e benteneentbenenes 17
4.1 Use Case Launch TOOL ..ottt ettt v ettt s et b emreanan 18
42 Use Case Launch DiSCOVET TOOLovcvvueiireirieiiernienintestretnss et stesetesseetesese et eveseesessessseseensssssorans 20-
43 Use Case Launch Scan TOOL ..ottt et s et sa et esvesas s evs s evesssesseseneseennas 27
44 Use Case Launch Analysis TOOL........cccooniriitresnenisete ittt eer et e esaenn 35
4.5 Use Case Launch Fuzzy Fusion Analysis.........ccceeeireiminiicnesceiecreeeeee e 43
4.6 Use Case VIEW RESUILSccoimiiiiiieicee ittt ettt b et s e st enan s s e nenn 51
5 Repository MOel USE CaSeSs.......cccvririrurieseeerinietiriisnessseenssesseseseeesesen et sssssnsesesassessssssessnssssssssrsssssssens 57
5.1 Use Case Get SESSION LiSt.......cuvuiriiiiirieireeeecnerentree st srre et ses e s ettt sebeseseses st enssnsnas 58
52 USE CaSE OPEN SESSION w.euveuireiiieiiietiririeiee e ietereees et te e ete e e s essesessessntsssbesesssssensassaeseseressresneneene 62
53 USE Case ClOSE SESSIONcueeueiiiiiriieniieririecertereteetsteces et e sae s sss e besecbeseesetsessar s seenessstesessotensseensssasans 66
54 UsE Case Manage SESSIONccocueeuiiireiirirrsteetrererrereriere s e esbeeteeeeeseensssesressestaesssesssasessssssesensenesnesaen 68
6 Model Preparation USE CaSESccceeuirvmreririeieeriireesesetesssseesnssessenasesssetesessssesseseseessssssasssasasasesssessssns 73
6.1 Use Case Configure TOOLcocovieiiiicirceneieere e esb et ev et ss s e s st as s 74
6.2 Use Case ASSIZN TOOL......ccoiiriiieetiie ettt et te et ev s stesr st b sa et esessstsseansassee 76
6.3 Use Case ASSIZN PTOFIIE ...ccueeiiiici ettt e eb sttt an e saee 78
6.4 USE Case PrOmMPE ANALYSE.....ccceieeirieciririeceeensentvtsetsesserreneestesereesessesrsesssesesneeseesesenesreessneseensen 80
T REPOSIHOTY SESSIOMScoveureiirieeererrtraerieerrntotrnererscsrrsserssaesesestesassesessesrasesssesessssssesesssssasssossrssssssersmnsstssssen 81
7.1 SCREIMIBS ...ttt sttt et et sas e s r s ettt et as s te st et e b teaessassee st eer et enins 81
8 LOZICAI VIBW ettt vttt b e £t et sttt bt m et s essesa bt een e 83
8.1 Threads - Component-Level Use Cases........ccovievureemreeiseeieereseseeesenesseseseesenssesssssssessssssssnes 83
8.2 Use Case to Thread MappPingcocovioeviriccreireiccerirssrsestesnsssesssete s snensse e sessresessassensssssnsssensssnes 83
8.3 IDEA APITRIEASoeceriieiieiieie ettt ss et er s sanssss st et es st sesesssssesannnssessne 84
8.4 RepoSHOTy API TRICAAScorueiririreicireec e te et rte e ettt e re et sttt senessas s ssnsseas 99
8.5 TOOL API TRI€AASc.coveneeveeerenicrrerrtiririssiet et ren e et en e ererteeee et r e aeean 113
8.6 SOfIWATE DESIZN ...c.eereirieieirinr ettt e et et s e see s ses s s s ae e s as b e seeseeesse e st aneneens 119
O DEPIOYMENE VIEW......coueuiiieiicireseeieetee st stteteeete et assssasss e s sssessssseneetesensesssrsssssansentontosentassmesiatosssennases 133
10 Size and Performanceooiciiiiiiiticcrec ettt sesss st s s ss s sssn e 134
11 SEOUIIEY ..ottt ettt st st s et t e ba st st st a s s as s st e bt brsesenene e s ateseneeasaetesetosasan 135
11,1 Database SECUIILYccccvevirrerueerireriiritirieeiestrtsteraeseste s esaeseessssesresessstsssssesresbesssenseesestenenssesssmsnnes 135
11.2 Security MECRANISINS.coeouiriieireieeeireretieiri et eaes e e e s e s n st et bebs b ete e s e s et ennneenetvansseneeeseenen 136
11.3 Authenticating Database Users with Windows NTcccciivriimieeeiieniieeree e 139
12 APPENAIX A ..ottt ettt s a et et ae s e e st ettt e et seateeae et et senasan 144
12.1 CSM minimum infOTMAtIONcocovvirrrieerrirerrtsierecse et reene st ese e e e ersssssrsssssssnsnssesssanas 144
122 TAXOMOMUESocvvemeeriirreenciteeneeercstniescer et e ts it ersess s e e s e assaasssbasssassebeseass e s s e besesseseteserssesesenesnsens 144
13 APPENQIX Bttt bbb s aennane 145
13,1 Table Of CSM LAYETSccieerierrerreeinierrsasnsreeteese e s s esesressesetessseessssessesssbesssssssessssasssnsassssssas 145
14 APPENAIX C.eoee ettt sttt sttt ettt et e b e a et b et s s s st eeeaeas bt seeeteeeretesanens 146
14.1 Table of IA Tool API Capabilities...........ecoermeurreierrireniinrirerneirinisrssssesesesseesesssesensesnsssssasessenes 146
15 GOSSAIY ..t eeetrerten st e st et es et et ae b s bt n s ebe e b st ensabatetessseseseassbennesessassesrassensreetssasies 147

117

List of Tables

Table 4-1 - Launch Discover Tool Scenario 1....21
Table 4-2 - Launch Discover Tool Scenario 2....22
Table 4-3 - Launch Discover Tool Scenario 3....23
Table 4-4 - Launch Discover Tool Scenario 4.... 24
Table 4-5 - Launch Discover Tool Scenario 5....25
Table 4-6 - Launch Scan Tool Scenario 1 30
Table 4-7 - Launch Scan Tool Scenario 2 31
Table 4-8 - Launch Scan Tool Scenario 3 31
Table 4-9 - Launch Scan Tool Scenario 4 32
Table 4-10 - Launch Scan Tool Scenario 5 33
Table 4-11 - Launch Analysis Too! Scenario 1..38
Table 4-12 ~ Launch Analysis Too! Scenario 2..39
Table 4-13 - Launch Analysis Tool Scenario 3..39
Table 4-14 - Launch Analysis Tool Scenario 4 .. 40
Table 4-15 - Launch Analysis Tool Scenario 5..41
Table 4-16 - Launch Fuzzy Analysis Tool
Scenario I....covveeeeiviee e 45
Table 4-17 - Launch Fuzzy Analysis Tool
Scenario 2 ..., 46
Table 4-18 - Launch Fuzzy Analysis Tool
Scenario 3 ..o 47
Table 4-19 - Launch Fuzzy Analysis Tool
SCENATIO 4 ..o 48
Table 4-20 - Launch Fuzzy Analysis Tool
Scenario S....ciiiiiviieee e, 49
Table 4-21 - View Results Scenario 1 52
Table 4-22 - View Results Scenario 2 54
Table 4-23 - View Results Scenario 3 55
Table 5-1 - Get Session List Scenario 1 59
Table 5-2 - Get Session List Scenario 2 59
Table 5-3 - Get Session List Scenario 3 60
Table 5-4 - Open Session Scenario 1................. 63
Table 5-5 - Open Session Scenario 2.................. 64

118

Table 5-6 - Open Session Scenario 3 65
Table 5-7 - Open Session Scenario 4 65
Table 5-8 - Close Session Scenario 1.................. 67
Table 5-9 - Close Session Scenario 2.................. 67
Table 5-10 - Manage Session Scenario 1............ 69
Table 5-11 - Manage Session Scenario 2............ 70
Table 5-12 - Manage Session Scenario 3 70
Table 5-13 - Manage Session Scenario 4............ 70
Table 5-14 - Manage Session Scenario 5............ 71
Table 5-15 - Manage Session Scenario 6........... 71
Table 5-16 - Manage Session Scenario 7............ 72
Table 7-1 - Layer ..c.cccoevvvrerrecvrcesereenee 81
Table 7-2 - Nodecccovvvieieciereiceeceee 82
Table 7-3 - Attributes........ccccoccevevcvvriecrennnnn.. 82
Table 8-1 ..o, 83
Table 8-2......courevurereerieeerireers e seeenesenesres 85
Table 8-3 .. 88
Table 8-4 ..o 88
Table 8-5 ... 90
Table 8-6 ..o 92
Table 8-7 Control Parameterscccu.n..... 95
Table 8-8....coeiiice e 95
Table 8-9 ... 98
Table 8-10 ..ot 98
Table 8-11cccvioiirieece e 100
Table 8-12 ..o 103
Table 8-13 ..o, 104
Table 8-14 ... 105
Table 8-15 ... 107
Table 8-16.....cociiieiecereereec e 113
Table 8-17 oo, 114
Table 14-1 - Tool configuration............cccuu...... 146

List of Figures

Figure 2-1 - Package Example.........ccccoeeiriecnennnne 2
Figure 2-2 - Note Examplecccccoecvveverreinnennne. 2
Figure 2-3 - Package Dependency or Instantiation2
Figure 2-4 - Use Cas€ccoevrivrurrrrirereencreresnenns 3
Figure 2-5 - Use Case with Interface.................... 3
Figure 2-6 - Sequence Diagram..........cc.cecveeveenene 3
Figure 2-7 - Example Class Diagram 4
Figure 2-8 - Collaboration Diagram 4
Figure 2-9 - State Diagramcccoceevvrecrrvenrnnee. 4
Figure 2-10 - Activity Diagram..........cccceceeuennnens 5
Figure 3-1 - Component Architecture................... 6
Figure 3-2 - Architecture Dependencies............... 8
Figure 3-3 - Architecture Design......c..ccccoveueenn. 9
Figure 3-4 - IDEA Component Architecture 10
Figure 3-5 - Repository Component Architecture
.. 11
Figure 3-6 - Tool Component Architecture......... 12
Figure 3-7 - Communication Component
ATCHIECTUTEovverereierereere sttt 13
Figure 3-8 - Component Detailed View 15
Figure 4-1 - Launch Tool Use Case.................... 18
FIUIE 4-2 oottt 19
Figure 4-3 - Launch Discover Tool Use Case 20
Figure 4-4 - Basic Flowcccccocevvvveecnennnnene. 22
Figure 4-5 - No discovery tools available........... 23
Figure 4-6 - Discovery tool is not properly
configured........cccoooeriiiniiininre e, 24
Figure 4-7 - Unable to update session 25
Figure 4-8 - Unable to format results.................. 26
Figure 4-9 - Scan System Use Case.................... 27
Figure 4-10 - Scan System Analysis Interaction
Diagramcccoeeveeevveireerrrerenrseereeneneeens 29
Figure 4-11 - Basic flow........ccccovveeevenrveinennenen. 30
Figure 4-12 - No scan tools available.................. 31
Figure 4-13 - Scan tool is not properly configured
.. 32
Figure 4-14 - Unable to update session 33
Figure 4-15 - Unable to format results................ 34
Figure 4-16 - Analyze Model Use Case.............. 35
Figure 4-17 - Analyze Model Analysis Interaction
Diagramcoeceeveeirerenrirennecenienae e 37
Figure 4-18 - Basic flow.......c.ccovvvcvernrrcennrnennene 38
Figure 4-19 - No analysis tool available............. 39
Figure 4-20 - Analysis tool is not properly
configured.....c..cooeeveeeerervec e 40
Figure 4-21 - Unable to update session 41
Figure 4-22 - Unable to format results................ 42

Figure 4-23 - Execute Fuzzy Fusion Use Case...43

119

Figure 4-24 - Execute Fuzzy Fusion Analysis
Interaction Diagramccccveeeiverirncvennnen. 45
Figure 4-25 - Basic flowccccovevcverveevcrerirennee, 46
Figure 4-26 - No fuzzy analysis tool available....47
Figure 4-27 - Fuzzy analysis tool is not property

configured.........ccoovvnnviniineee e 48
Figure 4-28 - Unable to update session............... 49
Figure 4-29 - Unable to format resuits................. 50
Figure 4-30 - View Results Use Case 51
Figure 4-31 - View Results Preliminary Interaction

Diagraml.......c.coceiiieereneenrnnreeeeesevesenens 52
Figure 4-32 - Basic flowccocoeervrerrerrcrererennne. 53
Figure 4-33 - Unable to printcceeeveveeevenenee. 55
Figure 4-34 - Unable to save........ccccooeeevrecnnnene. 56
Figure 5-1 - Data Model Diagram....................... 57
Figure 5-2 Get Session Lists Use Case 58
Figure 5-3 - Basic FlIoWccocceveeveeerrcrnnee. 59
Figure 5-4 - No sessions available....................... 60
Figure 5-5 - Unable to find a database................. 61
Figure 5-6 - Open Session.......ccceevvererrnvennnen. 62
Figure 5-7 - Basic flowccccooovvrceerervieceeennne. 64
Figure 5-8 - Close Session Use Case 66
Figure 5-9 - Manage Session Use Case............... 68
Figure 6-1 - Configure Tool Use Case................ 74
Figure 6-2 - Assign Tool Use Case...................... 76
Figure 6-3 - Assign Profile Use Case.................. 78
Figure 6-4 - Prompt Analyst Use Case................ 80
Figure 7-1 - Data Model Diagram....................... 81
Figure 8-1 - Open Investigation 89
Figure 8-2 - Start Investigationcccc.ouen...... 91
Figure 8-3 - Start Investigationcccecevnen... 93
Figure 8-4 - Close Investigation...........cccu.u........ 96
Figure 8-5 - Close Sessioncccoveveveveervevrenne. 101
Figure 8-6 - Create Sessionccccvvevervnennenn. 102
Figure 8-7 - Fetch Session Listccueven..... 103
Figure 8-8 - Fetch Tool Information.................. 104
Figure 8-9 - Fetch Tool List..........cccoevevennnenen. 106
Figure 8-10 - Open Session..........ccovveeerrevnene. 107
Figure 8-11 - Save Session.........c.ccocceeceurnnennne. 108
Figure 8-12 - View Session...........ccecevevereneneen. 110
Figure 8-13 - Launch Tool........c.ccovuvuerrcnnee. 116
Figure 8-14 - Component Architecture.............. 119
Figure 8-15 - IDEAAPI Class............coocevne..... 120
Figure 8-16 - IDEA Engine Layer 124
Figure 8-17 - RepositoryAPlL............c.ccouvueneee. 126
Figure 8-18 - Repository Engine Layer............. 129
Figure 8-19 - TOOlAPL.........cccccovrrrrrrverenne. 130

1 Scope

This document describes the architecture for the Integrated Design Environment for Assurance (IDEA)
Program.

Section 2 briefly describes the Unified Modeling Language (UML) conventions used within the rest of the
document.

Section 3 provides an overview of the architecture including the architecture styles used for the components.
Section 4 introduces the use cases defined for analyzing systems for vulnerabilities.

Section 5 introduces the use cases for managing the data model.

Section 6 introduces the use cases for related to tool management.

Section 7 describes the Common System Model (CSM) data structure.

Section 8 presents the logical view of the architecture that details the threads, API's and Class design.
Section 9 presents a view of the deployed system.

Section 10 discusses size and performance issues and resolutions.

Section 11 discusses security factors for the architecture.

Appendix A lists the minimum information for a CSM model for each tool and the CSM taxonomies.
Appendix B enumerates the tables defined for the CSM.

Appendix C presents the application programming interfaces (APIs) for the Commercial Off The Shelf Tools
(COTS) used for system vulnerability testing.

Appendix D is a glossary of terms.

120

2 Graphical Conventions Used in this Document

The software architecture model contains use cases, logical views, static views, class diagrams, and other
diagrams, all depicting the software architecture. The following sections explain the UML graphics used by the
modeling tool.

2.1 Package

A package is used to group one or more UML items (including nested packages).

.............. -

A Component

Figure 2-1 - Package Example

2.2 Rose Model Design Notes

Notes look like a page from a note pad and they are used for Displaying text on page. Notes may be attached to
virtually any UML graphic being shown and are used to provide additional information or bring attention to
the attached item.

This is a useful ~ A Component

component

Figure 2-2 - Note Example

2.3 Package Dependency or Instantiation

A dependency or instantiation looks like an arrow with a dashed line; it links one item to another. The
following shows a dependency of one package on another package.

} Compnent 2

D

Component 1

st .

Component 3

Figure 2-3 - Package Dependency or Instantiation

21

2.4 Use Case

The actor and use case with associations are show in a use case graphic as follows:

\ SO

et - N
/“'.\))
N o
actor use case

Figure 2-4 - Use Case

o o KT - /
interface se case
actor e e

Figure 2-5 - Use Case with Interface

2.5 Sequence Diagrams
Sequence Diagrams show the order of execution between actors and objects or objects and other objects.

' ' an instance
. actor _

1: create

2: handle creation

' —
3: perform task -

Figure 2-6 - Sequence Diagram

2.6 Class Diagrams
The class diagram shows the static structure of the objects.

122

- — —dependency

o

| Class 2
is’/a is\a
N V4
> aggregaﬁg/
Subclass 1 Subclass 2 |~ T . .

Figure 2-7 - Example Class Diagram

2.7 Collaboration Diagrams

Collaboration diagrams show a network view of interactions (messages sent and data flow) between objects.

1: create
data O—3>
O <—O peturn data
. an
; N 3: perform task Instance
actor

Figure 2-8 - Collaboration Diagram

2.8 State Diagrams

State Diagrams show the states of a given object and the actions that cause transitions between those states.

.\gtarf 7N
~—
~ | |
SV
astate
’/——-——-—"——--——j
@ o
@) STop

Figure 2-9 - State Diagram

There are documentation attributes for each state and event.

123

2.9 Activity Diagrams

Activity diagrams show procedural flow and behavior with control structure.

@ start

N/

../ perform this

N__activity 7

. \vi
_continue - decision

exit

Figure 2-10 - Activity Diagram

124

3 Architecture

This section provides an overview of the IDEA architecture.

3.1 Software Architecture

This section discusses the architecture style, architecture constraints, and goals of IDEA.

3.1.1 Introduction

IDEA Component Component Tool Component
IDEA AP| Communication
Layer
IDEA Tool Interface > Tool Interface
GUI . Implementation
R T 7]
CSM Interface CSM Interface
IDEA Engine [[~ l [COTS Tools
CSM Component
CSM Interface
Implementation
CSM API
CSM
GUI CSM

Figure 3-1 - Component Architecture

The IDEA software architecture is a heterogeneous architecture. At the level shown in Figure above, the style
is a distributed architecture with the Communication component acting as a Broker between the other three
components.

Components separate the individual functionality of each of IDEA's major behaviors.

Each component is designed as a cohesive entity with a well developed scope. The IDEA component allows
users to open models and run IA tools against them. The Repository component allows users to develop and
manage model templates. The Tool component supports IA COTS tool interaction with the IDEA and
Repository component.

The components are loosely-coupled with respect to each other and each has an independent architecture. At
the component level (for IDEA, Repository, and Tool), the architecture style exploited is a 3-tier layered
architecture.

The design goal behind the components is to have the implementation of their behavior decoupled from the
standardized operations available in their interfaces. With the exception of the Communication component,

125

each contains an interface, engine, and repository layers. These layers directly correspond to the Interface,
Business, and Data Storage layers of standard 3-tier architectures.

Another style used in the architecture is a Repository style. This style is a database-centric architecture where
the repository is used to maintain states of the components. The flavor of Repository style used is that the
IDEA component maintains the triggers and controls for the repository. With some database implementations
it is possible to imbed triggers and other contro! logic within the repository. The database imbedded approach
was not chosen since it may limit the architecture to particular repository implementations.

Here are some rules governing the design of the system:

o Communication between each component is managed by the Communication component.
The Communication component will act as a broker between the other components.

e Each component has a well-defined interface that supports the operations necessary for the
other components. There is some risk here associated with the completeness of the
interfaces.

To mitigate the impact of the complexities of component interface layers, the interfaces are split into usage
categories. For example, the Repository interface is separated into an interface to handle IDEA component
requests, an interface to handle Too! component requests, and an interface to handle Repository GUI requests.
The other component interfaces are similarly categorized.

IDEA's interface has several scopes. It is intended that all GUI calls go through an IDEA API. The second
interface scope is for other external components. Primarily, and probably solely, other external components
will be limited to the Tool component.

The Repository interface supports interaction between the database and the IDEA and Tool components as
well as its own Repository GUI. IDEA uses the Repository interface to get lists of sessions within the database.
The Tool component uses the Repository interface to get model information for the tool's use and to store tool
results.

e All component interactions flow through the Business and Repository layers to the Interface
layers of other components. With the exception of the Communication component, each
component implements this 3-tiered architecture.

The Communication component is a two-tier layer component with no data service layer.
The communication interface layer simply brokers the communication requests. All
communication configuration information is stored in the Communication component's
Logic layer.

e Each component's repository layer is nothing more than a proxy to the database. One
implementation strategy for these layers is that they are nothing more than calls to the
Repository component's interface. It may also be the case that the implementation of this
layer is a real repository managing the data necessary for the individual components.
Certainly component configuration information would be stored and maintained within the
repository layer.

Each component's Repository layer stores data for the component. The Repository layer for
the IDEA and Tool components is implemented as a proxy pattern to the component's data
within the database. This design implies that the Repository component services all of the
persistent data requirements for the IDEA and Tool components.

The Tool interface supports launching discovery, scanner, analysis, and Fuzzy Fusion™! tools.

Overall, the design is a database-centric, distributed-component architecture with the major components
interacting through a message broker. With the exception of the Communication component, each component

! Fuzzy Fusion is a Trademark of Harris Corporation.

126

is designed as a three-tier architecture. The four components, IDEA, Repository, Tool, and Communication
require well-defined interfaces for this goal. All interactions with a component are handled by the component's
APL. Business logic for each component is stored within the component's Engine layer.

Figure 3-2 shows the dependencies between the component's layers. Within the components, the interface and
business layers interact. The business layers use the internal data layer for data storage and retrieval. Inter-
component communication is limited to business-to-interface communication or, in the case of the data layer,
data-to-interface communication. This standard is followed throughout this document.

IDEA Component Tool Component
Interface Layer /l Interface Layer

Business Layer Business Layer

]]

Data Layer Data Layer

./

CSM Component
Interface

Figure 3-2 - Architecture Dependencies

The rest of this section discusses the scope of each of the component layers.

IDEA GUL
i(from IDEA Component)

{
!

IDEA Interface : Tool Interface
:(fr'om IDEA Component) ‘(from Tool Component)
; B .
IDEA Engine - Tool Engine
:(from IDEA Component) {(from Tool Component)

Reposi tory GUI : Reposi tory Interface

(from Repository Compoment).... — . “z(from Repository Compoment)

\'\[//
. RepositoryEngire
(from Repository Compoment)

\".Ev"l
_ Repository Database |
{(from Reposi tory Compoment)

Figure 3-3 - Architecture Design

3.1.2 IDEA Component

The IDEA component supports behaviors related to opening sessions, launching tools against a model, and
viewing tool results. The intent of this design is to isolate management logic for session control within the
IDEA Engine layer. The IDEA Interface layer is split into a GUI and API section. It is intended that all
interaction with the IDEA Engine layer occur through calls to the API. However, for the GUI, this may not be
efficient. For external components it is required that they only communicate to the IDEA Engine through the
IDEA APL

128

The IDEA component allows users to open Repository sessions, launch tools against the sessions, view, and
print tool results.

Through a user's request, the IDEA component gets a list of tools to launch against a model and then launches
them. This logic is within this component to allow the flexibility to launch tools independently of one another
without having to define a tool manager within the Tool component. If tools are independent of one another, in
terms of model information and tool result information, it may be possible to configure IDEA to launch
multiple tools or tool sets at once. The rationale for having IDEA launch tools is to separate the tool control
logic with the tool execution logic. IDEA controls the tool launching. Each tool defines the meaning behind
'tool launching.' See Tool Component Design for elaboration on the Tool component's scope.

The following use cases drive the protocol for the IDEA component interface.

3.1.2.1 Design

Ime;?acé"g IDEA APT / IDEAGUI
Layer ~|(from IDEA Interface) = ~ (from IDEA Interface)

- s
i T~

\

4 /

___________________ N [- A ;
Business ﬁ””‘”’ IDEA Engine

Layer

Data Layer **_

Figure 3-4 - IDEA Component Architecture

The IDEA Component is composed of three cohesive layers: an interface layer, a business unit layer, and a
repository (or data) layer.

The design of this component separates user's (GUI users and API users) requests from the commands and
logic necessary to implement the user's requests.

The interface layer of the IDEA Component is composed of a GUI and an Application Programming Interface
(API). The IDEA Engine implements the business layer and IDEA Storage implements the repository layer.

The interface layer supports all IDEA Component interactions. The interface layer provides options for
interacting with users as well as other software. Users of the IDEA interact with the GUI to define and analyze

their systems. The IDEA API supports all GUI commands as well as a set of commands available to external
1A tools.

The business layer supports session management, tool configuration, and tool execution. IDEA Engine
processes requests from the API through internal logic. Its data needs are supported by IDEA Storage.

129

Information for launching tools as well as general session information is acquired by querying IDEA Storage.
IDEA Engine communicates externally to the Tool Component for launching tools.

IDEA Storage may be implemented as a set of proxy objects to the actual data.

3.1.3 Repository Component

The Repository Component is the repository for the IDEA and Tool components. The intent of the Repository
component design is to have an interface to the database and a layer to implement logic that may be required to
- convert interface requests to repository logic.

When the Repository API gets a request for the model information needed by a tool, it will format the
information per the tools needs. The tool will receive a custom-formatted version of the model. Formatting the
model implies that each tool has some configuration or data mapping information stored within the database.
While the execution of the tool may be limited to the Tool component, the converting of CSM model format to
Tool format is done within the Repository component.

3.1.3.1 Design

CSMAPT CSMGUI
~ 7 “(from CSM Interface) = " (from CSM Interface)

|

Interface —
Layer '

|
i

3

v
'.V

 Business 2 N CSM Engine

Layer

______________ N _ CSM
— ! Repository

Figure 3-5 - Repository Component Architecture

The Repository Component is separated into three layers. Although this separation may not be carried over -
into implementation, its design guides the seperation of concerns between the parts of the Repository
Component.

The design of this componnet decouples calls to the repository from the actual repository implementation and
design. Calls to the repository are mapped to the repository implementation within the Repository Engine.

As with the IDEA component, there are two sections in the Repository component's interface layer. One
section is the Repository GUI allowing users to manage the database. The other section is the Repository API

which all external components will use to request or store model information. The interface layer of the
Repository enforces a standard protocol for accessing the database by external components.

The business layer of the Repository, Repository Engine, is responsible for handling the possible interpretation
of the interface protocol to the repository protocol. Also, the Repository Engine is responsible for converting
the database information to the formats understood by the tools.

Whether or not this middle layer is imbedded in repository logic (or in separate code specifically implemented
for the job) is unimportant to understanding the design at this point. Suffice it to say that the Repository
component performs two functions for the external components. It accepts model queries from the IDEA
component and the Tool component. For the IDEA component, it returns information about a Repository
session. For the Tool component, it returns a model tailored to the tool's needs.

If the repository implementation supports imbedded procedural logic, the implementation may be a thin

interface client and thick repository server. However, this implementation would possibly, as previously stated,
limit the COTS tools used to implement the repository.

3.1.4 Tool Component

The Tool component is responsible for Jaunching COTS IA tools and storing of their results. The goal of the
Tool component design is to allow tools to be easily plugged in to the component. Through the tool interface
layer, the IDEA component launches tools contained on the session's tool list. Each tool is responsible for its
own repository data. Each tool asks the Repository Component to give it the model information it requires.
Each tool returns its results to the repository. There will be a filter placed between the Tool and database.

3.1.4.1 Design

Interface & | Tool
Layer Interface
S
\]/ ' ‘
S W
l H
Business - Tool Engine _ e
Layer (f
. H & it
l
\"i"/
Data Layer Toz?l
~ 7 7 Repository T

Figure 3-6 - Tool Component Architecture
The Tool Component is separated into three layers.

The Tool Interface provides the necessary control mechanisms for launching tools.

131

The design of this component provides a separation of tool commands from the actual tools. Tool commands
are abstracted to the needs of the users. The actual tool interface, the code that calls the COTS tool is
encapsulated within the Tool Engine.

The Tool Engine accepts tool commands from the interface and reacts accordingly. It interfaces with the

Repository Component (via Tool Storage) to get information required by a tool as well as storing information
generated by tools.

The Tool Storage is a proxy to the Repository Component.

3.1.5 Communication Component

The Communication component is included separately within this architecture as a means of isolating the
inter-component communication from the communication implementation. The IDEA, Tool, and Repository
components interact with each other via messages. The definition for the message's transport mechanism
contained within the Communication component.

Comm

Interface

’ (...

~ IDEAAPT - Comm Logic Tool Interface
,"(fro(m’;IDEA Interface)™ T Z(from Tool Component)

]

i
!
i

!

Ny

Y
 CSMAPT
(from CSM Interface)

Figure 3-7 - Communication Component Architecture

The design of this component provides a communication abstraction for inter-component messages.
Components will interact with one another using the messages provided within the Communication

component. The communication component supports the following communication routes between
components:

* IDEA to Repository
e IDEA to Tool

e Tool to Repository
e Tool to IDEA

The Repository component does not initiate calls to the IDEA or Tool components.

132

The Communication component is designed with two layers. The interface layer, named Comm Interface,

provides services for message clients. The business layer, named Comm Logic, provides the message service
at a server level.

The Comm Interface provides an interface between the caller and the recipient.

The Comm Logic delivers the message to the recipient's interface.

133

3.1.6 Detailed View

(from IDEA Component)

N
¥

IDEA APT
(from IDEA Component) <

N

* Tool Inferface
(from Comm Component)|-.. . - —i (from Tool Layer)

Comm Interface
N/

\

 IDEAEngine |-
i{from IDEA Component)

—Y = .

Comm Logic l | Tool Engine

IDEA Storage (from Comm Component)

: | (from Tool Layer)
(from IDEA Component) I

| CSM Interface

i(fr‘om CSM Compoment) Tool Storage

- (from Tool Layer)

T

7
14

 CsM Engire
(fr'om CSM Compoment)

; CSM Repository
(from CSM Compoment)

Figure 3-8 - Component Detailed View

134

3.2 System Architecture

4 System Analysis Use Cases

This section discusses the use cases that support the function of analyzing a system model. The system model
is filled with data by discovery tools. The use cases Build System and Discover System are responsible for
filling out analysis information for a system model.

The use case Analyze System is the heart of this section. It includes three other use cases: Open Analysis
Session, Select Analysis for Launch, and Launch Analysis. From this use case the major functionality of IDEA
is defined.

A session represents a system model and is stored within the repository. The use case Open Analysis Session
supports user interaction and selection of a session to open. After this use case is complete, the Select Analysis
for Launch is invoked.

The Select Analysis for Launch use case includes the use case for selecting sessions; the Select Analysis
Session use case. The Select Analysis Session use case is presented separately with the intent that it may
support several use cases. Once a session is selected, it may be launched, opened for reading, opened for
modification, etc. Select Analysis for Launch allows the user to select a session and launch it. The term launch
means that the session will be checked for vulnerabilities by executing tools to analyze the session
information.

The Launch Analysis use case is invoked in response to a user opting to launch an analysis of a session. Its
scope is entered immediately after the Select Analysis for Launch use case completes. The Launch Analysis
use case is extended by Scan System , Analyze Model, and Execute Fuzzy Fusion.

Scan System is responsible for launching scanner tools against the hardware system and, if needed against the
session information. Launching analysis tools against the session information is defined by the Analyze Model
use case. The Execute Fuzzy Fusion use case defines how Fuzzy Fusion is used. Each of these three use cases
is responsible for launching the COTS tools. The launching of the tools is split into three separate use cases
only because there may be significantly different behavior and data between the three tool types.

The final use case of this section is View Results. It defines how the results of the Analyze System use case are
made available to the user.

The following sections describe these use cases in detail.

136

4.1 Use Case Launch Tool

s
SN

- - ~.

. /
R //
/\ N

Launch Too!

IDEA User

(from Actors)

Figure 4-1 - Launch Tool Use Case

4.1.1 Brief Description

In this use case, the IDEA system allows users to run tools against the session information.

4.1.2 Pre-Conditions

Before this use case starts, the session must have been created in the database.
4.1.3 Flow of Events

4.1.3.1 Start of use case

This use case starts when the session has been opened and locked.

4.1.3.2 Basic flow
1. Launch the tool

After the IDEA User selects a session to launch, the session name and tool name is used to launch a tool. The
tool sends a query to the database for tool-specific information.

After the tool execution has completed, it stores its results into the database.

2. Store tool results

The tool sends its updated information to the database along with the session information.

4.1.3.3 End of use case

This use case ends when the tool has stored any changes to the session into the repository.

4.1.3.4 Alternative flows

4.1.4 Post-Conditions

4.1.5 Scenario Diagrams

. IDEA User IDEA l Comm ’ Tool i CSM

_ Component Component Component . Component |

1: Openland lock session | * i 5

2: launch the tool 1 i
3: launch tool 4: launch tool

5: store tool results

L

| 6: store tool results

Figure 4-2

4.2 Use Case Launch Discover Tool

~

/ TN /

Discover System

Mapper

(from Actors)

Figure 4-3 - Launch Discover Tool Use Case

4.2.1 Basic Description

Prior to launching scanner and analysis tools, information about the network model for the system must be
collected. Discovery tools automatically collect this information.

The user selects a session to run a discover tool on. IDEA opens the session and launches the discover tool.
After the tool has finished discovering the system, its information is imported back into the session.

4.2.2 Pre-Conditions

1. One or more discovery tools have been configured and assigned to the session. This pre-condition is tested
for and the alternative flow details the behavior if the pre-condition is not met.

2. A session that has not had a discovery tool executed for it exists within the repository.

3. A session has been opened using the Open Session use case.
4.2.3 Flow of Events

4.2.3.1 Start of Use Case

This use case starts when the IDEA User chooses to launch a discover tool.

4.2.3.2 Basic Flow

1. Choose discovery tool

A discovery tool is selected from the session's tool list. A message is sent to the tool manager to launch the
selected tool.

2. Launch discovery Tool

The tool object is opened. It gets its configuration information from the repository. After getting its
configuration information it calls the COTS tool. The tool executes.

3. Update repository with the session information
After the tool executes, the results are sent to the repository.
4. Format results

The repository component converts the tool's session information format to a format compatible with the
database internal session information format. The information is then stored into the database.

4.2.3.3 End of use case

This use case ends when the tool completes and stores its information in the database.

4.2.3.4 Alternative flows

1a. No discovery tools available

In step 1, if the session's discovery tool list is empty, the user is notified and this use case ends.
2a. Discovery tool is not properly configured

In step 2, if the discovery tool is unable to launch the user is notified and this use case ends.
3a. Unable to update session

In step 3, if an error occurs while attempting to update the repository with the additional session information
the user is notified and this use case ends.

4a. Unable to format results

In step 4, if the session formatter is unable to format the results, the user is notified and this use case ends.

4.2.4 Post-Conditions

1. If the use case successfully completes, the session model contains information ready to be scanned or
analyzed by a scan or analysis tool (respectively).

2. A session is updated.

4.2.5 Special Requirements

Discovery tools are launched within the Tool Component.
4.2.6 Scenarios

4.2.6.1 Scenario 1 - Basic flow

Table 4-1 - Launch Discover Tool Scenario 1

Initiator Behavior Target

IDEA Component Get a discover tool to launch IDEA Component
IDEA Component Launch the discover tool Tool Component

Tool Component Get tool configuration information Repository Component
Tool Component Launch the discover tool External Tool

Tool Component Store the tool results Repository Component

140

IDEA || Teol | | CSM | Externa Tool
Component | | Component . Component

"“‘: 1: Get discoven tool to launch . |

2: Launch disco;ver tool

3: Get tool configﬂrafion infor'ma'ric:m

4: Launch the discover tool :

5: Store the tool results

i

Figure 4-4 - Basic Flow

4.2.6.2 Scenario 2 - No discovery tools available

Table 4-2 - Launch Discover Tool Scenario 2

Initiator Behavior Target
IDEA Component Get a discover tool to launch IDEA Component
IDEA Component No tools available IDEA User

In the scenario selection list, the user has selected a scenario that has no discovery tools assigned to it. When
the user tries to launch discovery against the session, this error occurs.

141

IDEA
Component

Figure 4-5 - No discovery tools available

- 1: Get discover tool to launch

" | No tool available

information dialog is
presented to the user.

4.2.6.3 Scenario 3 - Discovery tool is not properly configured

Table 4-3 - Launch Discover Tool Scenario 3

Initiator

Behavior

Target

IDEA Component

Get a discover tool to launch

IDEA Component

IDEA Component

Launch the discover tool

Tool Component

Tool Component

Get tool configuration information

Repository Component

Repository Component

Tool not properly configured

Tool Component

Tool Component

Unable to launch tool

IDEA Component

IDEA Component

Unable to launch tool

IDEA User

IDEA User

Continue with next tool*

IDEA Component

*Or the user can abort the discovery.

142

IDEA | Tool CSM External Tool
Component | Component Component

" 1: Get discover tool to launch ‘ |
= : |
2: Launch disco;ver tool

3: Get tool configﬁ.lraﬁon informaﬂc}m

i | Tool not properly configured = |

!

Figure 4-6 - Discovery tool is not properly configured

4.2.6.4 Scenario 4 - Unable to update session

Table 4-4 - Launch Discover Tool Scenario 4

Initiator Behavior Target

IDEA Component Get a discover tool to launch IDEA Component
IDEA Component Launch the discover tool Tool Component

Tool Component Get tool configuration information Reﬁository Component
Tool Component Launch the discover tool External Tool

Tool Component Store the tool results Repository Component
Repository Component Unable to save information Tool Component

Tool Component Unable to save results - IDEA Component
IDEA Component Unable to save results IDEA User

This differs from Scenario 5 in that the information cannot, for some reason, be stored into the repository.

143

_ IDEA Tool CSM
__Component | = Component | Component |

~ 1 Get discoveﬁ tool to launch
—

2: Launch discoyer tool

L

External Tool

1

3: Get tool configbrm‘ion information

5: Store the tool results

4: Launch the discover tool

T !
| |Unable to save information l |
{ | [1
I
Figure 4-7 - Unable to update session
4.2.6.5 Scenario 5 - Unable to format results
Table 4-5 - Launch Discover Tool Scenario 5
Initiator Behavior Target
IDEA Component Get a discover tool to launch IDEA Component
IDEA Component Launch the discover tool Tool Component

Tool Component

Get tool configuration information

Repository Component

Tool Component

Launch the discover tool

External Tool

Tool Component

Store the tool results

Repository Component

Repository Components

Unable to format the results

Tool Component

Tool Component

Tool result version mismatch

IDEA Component

IDEA Component

Tool result version mismatch

IDEA User

144

IDEA | Tool - sm External Tool
Component | | Component | | Component

i
i

| i
+ 1: Get discoven tool to launch

I<_.,,.__...A___% i
2: Launch discolyer' tool

1
e |
3: Get tool config{;raﬂon informa'rici?n
|
| |
4: Launch the c:liscover' tool

B: Store the tool resu?fs

i

|

|

1

‘ i 1

T ‘ i 1

| |

| |

| !
|

Unable to format results \—‘

T
| i
| |

Figure 4-8 - Unable to format results

145

4.3 Use Case Launch Scan Tool

Populater Scan System

(from Actors)

Figure 4-9 - Scan System Use Case

This use case extends Launch Analysis.

4.3.1 Brief Description

Scanning tools are used to gather information for the selected session. A list of scan tools, found in the session
information is iterated through.

The session information required by the current scan tool is formatted and passed as the scan tool is launched.
Scan results are incorporated back into the session.

4.3.2 Pre-Conditions

1. A session that has had a discovery tool executed for it exists within the repository. The Launch Discover
Tool use case has been executed.

2. A session has been opened using the Open Session use case.
4.3.3 Flow of Events

4.3.3.1 Start of use case

This use case starts when the user chooses to launch a scan tool.

4.3.3.2 Basic flow

1. Choose scan tool

A scan tool is selected from the session's tool list. A message is sent to the tool manager to launch the selected
tool.

2. Launch scan tool

The tool object is opened. It gets its configuration information from the repository. After getting its
configuration information it calls the external tool. The tool executes.

3. Update repository with the session information
After the tool executes, the results are sent to the repository.
4. Format results

The repository component converts the tool's session information format to a format compatible with the
database internal session information format. The information is then stored into the database.

146

4.3.3.3 End of use case

This use case ends when the tool completes and stores its information in the database.

4.3.3.4 Alternative flows

1a. No scan tools available

In step 1, if the session's scan tool list is empty, the user is notified and this use case ends.
2a. Scan tool is not properly configured

In step 2, if the scan tool is unable to launch the user is notified and this use case ends.

3a. Unable to update session

In step 3, if an error occurs while attempting to update the repository with the additional session information
the user is notified and this use case ends.

4a. Unable to format results

In step 4, if the session formatter is unable to format the results, the user is notified and this use case ends.

4.3.4 Post-Conditions

1. Ifthe use case successfully completes, the session model contains information ready to be analyzed by an
analysis tool.

2. The session is updated.
4.3.5 Special Requirements
4.3.6 Scenarios

4.3.6.1 Analysis
open the scanner tool list,
iterate through the scanner list
each scanner knows what session information it requires and how to get it

after getting the session information the scanner formats it and launches a
tool

results of the tool are read and passed back into the repository

close the scanner tool list.

147

" investigator : aScanner theCSM :
‘| 1 validate system
>
" } 2: read session

theScanTool

!

3: get seission data

4: validate system

|

5: update session

/{i

;
\
\

 theCSMdb

|
6: update session

Figure 4-10 - Scan System Analysis Interaction Diagram

4.3.6.2 Preliminary

The interaction diagram for this use case is identical to that of the Launch Analysis use case preliminary
sequence diagram. The data passed between components would be the qualifier for the specific scan tool.

148

4.3.6.3 Scenario 1 - Basic flow

Table 4-6 - Launch Scan Tool Scenario 1

Initiator Behavior Target
IDEA Component Get a scan tool to launch IDEA Component
IDEA Component Launch the scan tool Tool Component

Tool Component

Get tool configuration information

Repository Component

Tool Component

Launch the scan tool

External Tool

Tool Component

Store the tool results

Repository Component

IDEA Tool
__Component | | Component |

|
+ 1 Get scan tpol to launch
— |
I
2: Launch scan tool

g

L

4: Launch 'rh# scan tool

|
|
|
!
I
3: Get tool configbr-a‘rion informa’rn%n
) |
|
|
|

External Tool

{
t
|

H: Store the tool resu,fs

e
———

Figure 4-11 - Basic flow

149

4.3.6.4 Scenario 2 - No scan tools available

Table 4-7 - Launch Scan Tool Scenario 2

Initiator Behavior Target
IDEA Component Get a scan tool to launch IDEA Component
IDEA Component Report to User IDEA User
IDEA
Component

1: Get scan tool to launch

’No tool available

|information dialog is
presented to the user.

Figure 4-12 - No scan tools available

4.3.6.5 Scenario 3 - Scan tool is not properly configured

Table 4-8 - Launch Scan Tool Scenario 3

Initiator

Behavior

Target

IDEA Component

Get a scan tool to launch

IDEA Component

IDEA Component

Launch the scan tool

Tool Component

Tool Component

Get tool configuration information

Repository Component

Repository Component Tool not properly configured Tool Component
Tool Component | Unable to launch tool IDEA Component
IDEA Component Unable to launch tool IDEA User

IDEA User Continue with next tool* IDEA Component

*QOr abort Scanning.

150

IDEA
Component

; Tool CSM
. Component Component

External Tool%

1: Get scan Tlpol to launch

2: Launch scdn tool

i

| |

|

|

|

, |
3: Get tool configliration informaTic‘Sn

|

|

| |

|] o

| | Tool not properly configured > |

i O

| |

|

Figure 4-13 - Scan tool is not properly configured

4.3.6.6 Scenario 4 - Unable to update session

Table 4-9 - Launch Scan Too! Scenario 4

Initiator Behavior Target
IDEA Component Get a scan tool to launch IDEA Component
IDEA Component Launch the scan tool Tool Component

Tool Component

Get tool configuration information

Repository Component

Tool Component

Launch the scan tool

External Tool

Tool Component

Store the tool results

Repository Component

Repository Component Unable to save information Tool Component
Tool Component Unable to save resuits IDEA Component
IDEA Component Unable to save results IDEA User

IDEA Tool CSM External Tool
__Component | . Component | _ Component

| |
— 1: Get scan tpol to launch

|
2: Launch scan tool

L

|

|

|

|

!

|

|
3: Get tool configuration informa‘rién

|

!
4: Launch The scan tool l

>[’,,,
‘ .
: 5: Store the tool results |
L = >[L {
: |
| T : .‘ I
T 1 Unable to save information 1
‘ \
; % !
i | '1
| 1 |
Figure 4-14 - Unable to update session
4.3.6.7 Scenario 5 - Unable to format results
Table 4-10 - Launch Scan Tool Scenario 5
Initiator Behavior Target
IDEA Component Get a scan tool to launch IDEA Component
IDEA Component Launch the scan tool Tool Component
Tool Component Get tool configuration information Repository Component
Tool Component Launch the scan tool External Tool
Tool Component Store the tool results Repository Component
Repository Components Unable to format the results Tool Component
Tool Component Tool result version mismatch IDEA Component
IDEA Component Tool result version mismatch IDEA User

152

IDEA Tool CSM. External Tool

|

L
e
@

PO
-
[%2)

(2]
=)
=1
o J
O
S
-+
(o]
g
3
(2]
=

= |

I
2: Launch scan tool

4: Launch Thé scan tool

3: Get tool configlration informatidn

B: Store the tool resu_

“U

21

Unable to format

——]

T
i
i

ts
results L-‘ :

Figure 4-15 - Unable to format results

4.4 Use Case Launch Analysis Tool

N -
/ - o \
Analyzer Analyze System

(from Actors)

Figure 4-16 - Analyze Model Use Case

This use case extends Launch Analysis.

4.4.1 Brief Description

Analysis tools are used to gather information for the selected session. A list of scan tools, found in the session
information is iterated.

The session information required by the current analysis tool is formatted and passed as the analysis tool is
launched. Analysis results are incorporated back into the repository.

4.4.2 Pre-Conditions

1. A session that has had a scan tool executed for it exists within the repository. The Launch Scan Tool use
case has been executed.

2. A session has been opened using the Open Session use case.
4.4.3 Flow of Events

4.4.3.1 Start of use case

This use case starts when the IDEA User chooses to launch an analysis tool.

4.4.3.2 Basic flow

1. Choose analysis tool

An analysis tool is selected from the session's tool list. A message is sent to the tool manager to launch the
selected tool.

2. Launch analysis tool

The tool object is opened. It gets its configuration information from the repository. After getting its
configuration information it calls the external tool. The tool executes.

3. Update repository with the session information
After the tool executes, the results are sent to the repository.
4. Format results

The repository component converts the tool's session information format to a format compatible with the
database internal session information format. The information is then stored into the database.

154

4.4.3.3 End of use case

This use case ends when the tool completes and stores its information in the database.

4.4.3.4 Alternative flows

1a. No analysis tools available

In step 1, if the session's analysis tool list is empty, the user is notified and this use case ends.
2a. Analysis tool is not properly configured

In step 2, if the analysis tool is unable to launch the user is notified and this use case ends.

3a. Unable to update session

In step 3, if an error occurs while attempting to update the repository with the additional session information
the user is notified and this use case ends.

4a. Unable to format results

In step 4, if the session formatter is unable to format the results, the user is notified and this use case ends.

4.4.4 Post-Conditions

1. If the use case successfully completes, the session model contains information ready to have fuzzy
analysis performed on it.

2. The session is updated.

4.4.5 Special Requirements
4.4.6 Scenarios

4.4.6.1 Analysis
open the analysis tool list,
iterate through the analyzer list
each analyzer knows what session information it.requires and how to get it

after getting the session information the analyzer formats it and launches a
tool

results of the tool are read and passed back into the repository

close the analysis tool list.

155

investigator | anAnalyzer | theCSM: | theCSMdb | |theAnalysisTool
CSM APT
1: validate system “ ‘i |
2: read session ! i
3: get session dagxll)
;,: validate system ‘

5: update session

|
|
|
\
|
1

6: update session
N

|

.
|
|
|
|
|
l

Figure 4-17 - Analyze Model Analysis Interaction Diagram

4.4.6.2 Preliminary

The interaction diagram for this use case is identical to that of the Launch Analysis use case preliminary
sequence diagram. The data passed between components would be the qualifier for the specific scan tool.

156

4.4.6.3 Scenario 1 - Basic flow

Table 4-11 - Launch Analysis Tool Scenario 1

Initiator Behavior Target
IDEA Component Get an analysis tool to launch IDEA Component
IDEA Component Launch the analysis tool Tool Component

Tool Component

Get tool configuration information

Repository Component

Tool Component

Launch the analysis tool

External Tool

Tool Component

Store the tool results

Repository Component

IDEA
Component

<

Tool CSM
__Component | Component

External TooI%;

|
~ 1: Get analysis| tool to launch

2: Launch analy%is tool

—]

I

|
|
|
|
|
3: Get tool config+m’rion informaﬂ?n

4: Launch the g’:nalysis tool

1

|
|
|
i

B: Store the tool resup'rs

Figure 4-18 - Basic flow

157

4.4.6.4 Scenario 2 - No Analysis tools available

Table 4-12 - Launch Analysis Tool Scenario 2

Initiator Behavior Target
IDEA Component Get an analysis tool to launch IDEA Component
IDEA Component Report to User IDEA User
IDEA
. Component

' 1: Get analysis tool to launch

<

No tool available
information dialog is
presented to the user.

Figure 4-19 - No analysis tool available

4.4.6.5 Scenario 3 - Analysis tool is not properly configured

Table 4-13 - Launch Analysis Tool Scenario 3

Initiator Behavior - | Target

IDEA Component Get an analysis tool to launch IDEA Component
IDEA Component Launch the analysis tool Tool Component

Tool Component Get tool configuration information Repository Component
Repository Component Tool not properly configured Tool Component

Tool Component Unable to launch tool IDEA Component
IDEA Component Unable to launch tool IDEA User

IDEA User » Continue with next tool* IDEA Component

*Or abort Analysis.

158

.~ Tool
. Component

: |
-+ 1 Get analysis; tool to launch |
< t l

H |

2: Launch angl;¥ sis tool

)

3: Get tool config+|ra‘rion infor'mm‘i{m

Tool not properly configured

I

! ;

H t]
| i
|

Figure 4-20 - Analysis tool is not properly configured

4.4.6.6 Scenario 4 - Unable to update session

Table 4-14 - Launch Analysis Tool Scenario 4

Initiator Behavior Target

IDEA Component Get an analysis tool to launch IDEA Component
IDEA Component Launch the analysis tool Tool Component

Tool Component Get tool configuration information Repository Component
Tool Component Launch the analysis tool External Tool

Tool Component Store the tool results Repository Component
Repository Component Unable to save information Tool Component

Tool Component Unable to save results IDEA Component
IDEA Component Unable to save results IDEA User

159

l

IDEA Tool | CSM
Component | = Component | Component [

i ‘ i
- 1: Get analysis tool to launch ‘

: < e e
: 2:Launch anal?sis tool

L

4: Launch the g‘;nalysis tool

External Tool

3: Get tool configtjlr‘a'rion informa'ri(?n

5: Store the tool resuPTs

gt

1

Unable to save information = |
i 1 !
Figure 4-21 - Unable to update session
4.4.6.7 Scenario 5 - Unable to format results
Table 4-15 - Launch Analysis Tool Scenario 5
Initiator Behavior Target
IDEA Component Get an analysis tool to launch IDEA Component

IDEA Component Launch the analysis tool

Tool Component

Tool Component Get tool configuration information

Repository Component

Tool Component Launch the analysis tool

External Tool

Tool Component Store the tool results

Repository Component

Repository Components Unable to format the results

Tool Component

Tool Component Tool result version mismatch

IDEA Component

IDEA Component Tool result version mismatch

IDEA User

160

~ IDEA Tool CSM External Tool

i i i
s ____1_:__Gef analysis: tool to launch |
< |

i
: !
! l
2: Launch anglysis tool i
. I

|

3: Get tool configélr'a‘rion informaﬁcj)n

4: Launch the ﬁ%malysis tool

! /[

l B

5 Store the tool r‘esulhs

i
T | | ;
' Unable to format resul*rsj—”‘

]

| |

i 5 |
|

| ! 1

Figure 4-22 - Unable to format results

161

4.5 Use Case Launch Fuzzy Fusion Analysis

Fuser Execute Fuzzy Fusion

(from Actors)

Figure 4-23 - Execute Fuzzy Fusion Use Case

This use case extends Launch Analysis.

4.5.1 Brief Description

Unlike the Scanner and Analysis tools that rely on session for their information, Fuzzy Fusion requires the
analysis information with the session information. Fuzzy Fusion explores the results of the scanner and
analysis and establishes a vulnerability indicator against the session's data.

4.5.2 Pre-Conditions

3. A session that has had an analysis tool executed for it exists within the repository. The Launch Analysis
Tool use case has been executed.

4. A session has been opened using the Open Session use case.
4.5.3 Flow of Events

4.5.3.1 Start of use case

This use case starts when the user chooses to launch the fuzzy analysis tool.

4.5.3.2 Basic flow
1. Choose fuzzy analysis tool

The fuzzy analysis tool is selected from the session’s tool list. A message is sent to the tool manager to launch
the selected tool.

2. Launch fuzzy analysis tool

The tool object is opened. It gets its configuration information from the repository. After getting its
configuration information it calls the external tool. The tool executes.

3. Update repository with the session information
After the tool executes, the results are sent to the repository.
4. Format results

The repository component converts the tool's session information format to a format compatible with the
database internal session information format. The information is then stored into the database.

162

4.5.3.3 End of use case

This use case ends when the tool completes and stores its information in the database.

4.5.3.4 Alternative flows

1a. No fuzzy analysis tool available

In step 1, if the session's fuzzy analysis tool list is empty, the user is notified and this use case ends.
2a. Fuzzy analysis tool is not properly configured

In step 2, if the fuzzy analysis tool is unable to launch the user is notified and this use case ends.
3a. Unable to update session

In step 3, if an error occurs while attempting to update the session with the additional session information the
user is notified and this use case ends.

4a. Unable to format results

In step 4, if the session formatter is unable to format the results, the user is notified and this use case ends.

4.5.4 Post-Conditions
3. If the use case successfully completes, the session model contains the updated information.

4. The session is updated.

4.5.5 Special Requirements
4.5.6 Scenarios

4.5.6.1 Analysis

open the fuzzy fusion tool,

the fuzzy fusion tool knows what session information it requires and how to
get it

after getting the session information the fuzzy fusion tool formats it and
launches FuzzyFusion™.

results of the tool are read and passed back into the repository

close the fuzzy fusion tool.

163

investigator

theCSMdb | theAnalysisTool
l N
i I

- 1: validate system i i
. ‘ :

aFuzzyFuser 7 theCSM :

CSM APT

-
]
1
i

—~

2: read session
et eeeeenn it e ‘_>, Ll

3: get session data -

»
' 4: analyze system i

:5: update session ‘
>|l

6: update session |

Figure 4-24 - Execute Fuzzy Fusion Analysis Interaction Diagram

4.5.6.2 Preliminary

The interaction diagram for this use case is identical to that of the Launch Analysis use case preliminary
sequence diagram. The data passed between components would be the qualifier for the specific scan tool.

4.5.6.3 Scenario 1 - Basic flow

Table 4-16 - Launch Fuzzy Analysis Tool Scenario 1

Initiator Behavior Target

IDEA Component Get a fuzzy analysis tool to launch IDEA Component
IDEA Component Launch the fuzzy analysis tool Tool Component

Tool Component Get tool configuration information Repository Component
Tool Component Launch the fuzzy analysis too} External Tool

Tool Component Store the tool results Repository Component

164

IDEA | Too | CSM | [Externdl Too
Component | Component | Component

| |
-1: Get fuzzy analysis tool to launch

B |
21 Launch fuzzy aq‘alysis tool

3: Get tool configuration information

|

4: Launch the fuz!‘gy analysis tool

B: Store the tool resuPTs

Figure 4-25 - Basic flow

4.5.6.4 Scenario 2 - No fuzzy analysis tool available

Table 4-17 - Launch Fuzzy Analysis Tool Scenario 2

Initiator Behavior Target
IDEA Component Get a fuzzy analysis tool to launch IDEA Component
IDEA Component Report to User IDEA User

165

IDE
Component

>

I: Get fuzzy analysis tool to launch

| No tool available
i information dialog is

| presented to the user.
\

Figure 4-26 - No fuzzy analysis tool available

4.5.6.5 Scenario 3 - Fuzzy analysis tool is not properly configured

Table 4-18 - Launch Fuzzy Analysis Tool Scenario 3

Initiator Behavior Target

IDEA Component Get a fuzzy analysis tool to launch IDEA Component
IDEA Component Launch the fuzzy analysis tool Tool Component

Tool Component Get tool configuration information Repository Component
Repository Component Tool not properly configured Tool Component

Tool Component Unable to launch tool IDEA Component
IDEA Component Unable to launch tool IDEA User

IDEA User Continue with next tool* IDEA Component

*Or abort Analysis.

166

IDEA | Tool M
Component | Component . Component
| i
1. Get fuzzy analysis tool to launch

N

4.5.6.6 Scenario

= a

Launch fuzzygralysis tool

'
1

;

External Toolgig

3: Get tool config?rafion information

|

i

Tool not properly configured

| |
i !

Figure 4-27 - Fuzzy analysis tool is not properly configured

4 - Unable to update session

Table 4-19 - Launch Fuzzy Analysis Tool Scenario 4

Initiator Behavior Target
IDEA Component Get a fuzzy analysis tool to launch IDEA Component
IDEA Component Launch the fuzzy analysis tool Tool Component

Tool Component

Get tool configuration information

Repository Component

Tool Component

Launch the fuzzy analysis tool

External Tool

Tool Component

Store the tool results

Repository Component

Repository Component Unable to save information Tool Component
Tool Component Unable to save results IDEA Component
IDEA Component Unable to save results IDEA User

IDEA l Tool 1 | CSM ‘ External Tool

_ Component | . Component Component |

1 Get fuzzy analysis tool to launch

2: Launch fuzzy analysis tool

3: Get tool confighmﬂon information

L

7
'

5: Store the tool resu‘ifs |

!

f i |

: Unable to save information l :

i i

! i |

| |
| \ i
Figure 4-28 - Unable to update session

4.5.6.7 Scenario 5 - Unable to format results
Table 4-20 - Launch Fuzzy Analysis Tool Scenario 5
Initiator Behavior Target
IDEA Component Get a fuzzy analysis tool to launch IDEA Component
IDEA Component Launch the fuzzy analysis tool Tool Component
Tool Component Get tool configuration information Repository Component
Tool Component Launch the fuzzy analysis tool External Tool
Tool Component Store the tool results Repository Component
Repository Components Unable to format the results Tool Component
Tool Component Tool result version mismatch IDEA Component
IDEA Component Tool result version mismatch IDEA User

168

IDEA = Tool CSM External Toolé
Component | = Component | Component
{ .
1 Get fuzzy analysis tool to launch ;
_— i : :
2: Launch fuzzy analysis tool

3: Get tool config{.lra‘rion infor‘ma‘ric;)n

4: Launch the fuzigy analysis tool

1

5: Store the tool resuF‘rs

"L

|

Unable to format results Ll
[
|

Figure 4-29 - Unable to format results

169

4.6 Use Case View Results

IDEA User View Results

(from Actors)

Figure 4-30 - View Results Use Case

4.6.1 Brief Description

After running an investigation users have the capability to view the results of the analysis. IDEA allows the
user to select the session whose results are to be viewed. IDEA then launches a result-browser to view the
resuits report. Users have the option to save the report to file and print it.

4.6.2 Pre-Conditions

The Launch Tool use case has completed.
4.6.3 Flow of Events

4.6.3.1 Start of use case

This use case starts when the user wants to view a session's information.

4.6.3.2 Basic flow
1. Get Session List and Open Session
These use cases are included.

2. Show Session

The session information is presented to the user. The user is given a set of options for the information: Print,
Save, Close.

3. Print or Save session

The session information is directed to the printer or a file.

4.6.3.3 End of use case

This use case ends when the user selects Close.

4.6.3.4 Alternative flows
3a. Unable to Print

In step 3, if a printer is not configured, the user is informed and the step ends.

3b. Unable to Save

170

In step 3, if the save operation is unable to successfully complete, the user is informed and the step ends.

4.6.4 Post-Conditions

The session's information has been shown to the user. The session is closed.

4.6.5 Special Requirements
4.6.6 Scenario Diagrams

4.6.6.1 Preliminary

IDEA
Component

| 1 select view session

L 2: display results window

Figure 4-31 - View Results Preliminary Interaction Diagram

This use case executes in part with the Select Analysis Session use case. After the Select Analysis Session use
case is performed, this use case continues by displaying a select-to-view-dialog or a method for allowmg the

user to view the session's tool's results.

After the user opts to view the results for a tool (or a set of tools), the results are displayed to the user. The user

also has the option, to save the results to a file or print the results.

4.6.6.2 Scenario 1 - Basic flow
Table 4-21 - View Results Scenario 1

Initiator Behavior Target

IDEA User UC Get Session List

IDEA User UC Open Session (as read only)

IDEA User Choose to view the session result IDEA Component
information

IDEA Component Query the database for the session Repository Component

171

information

IDEA Component Make the session information human | IDEA Component
readable
IDEA Component Place the session information in a IDEA Component
window for the user
IDEA User Select Print or Save of the session IDEA Component
information
IDEA Component Process the user's action IDEA Component
IDEA User Close the session information IDEA Component
window
9
/\ IDEA CSM
Component ~ Component
: IDEA User SOMEINEN _ SOMPOnent,

l

L

| i
1: View session result information !
A !

2: Query session in:for'mafi

|

i

5: Save or pri

fhe information :

7: Close informaf*on window

U
|
|
|
|

Figure 4-32 - Basic flow

172

on

ormat session information for readability
|

4.6.6.3 Scenario 2 - Unable to print

Table 4-22 - View Results Scenario 2

Initiator Behavior Target

IDEA User UC Get Session List

IDEA User UC Open Session (as read only)

IDEA User Choose to view the session result IDEA Component
information

IDEA Component Query the database for the session Repository Component
information

IDEA Component Make the session information human | IDEA Component
readable

IDEA Component Place the session information in a IDEA Component
window for the user

IDEA User Select Print or Save of the session IDEA Component
information

IDEA Component Process the user's print action IDEA Componént

IDEA Component Inform the user of inability to print IDEA User

N
N

N\ ~ IDEA com
: IDEA User ‘ Qg_mpg-rﬁn—f go_mmt

|

1 1: View session result information
> L

|
= |

B: Save or pri fhe information

\

Unable to
_process
| ' irequest i

!
| |
|
|
|

Figure 4-33 - Unable to print

4.6.6.4 Scenario 3 - Unable to save

Table 4-23 - View Results Scenario 3

2: Query session information

3: Format session information for readability

4: Create view windbw for information

Initiator Behavior Target

IDEA User UC Get Session List

IDEA User UC Open Session (as read only)

IDEA User Choose to view the session result IDEA Component
information

IDEA Component Query the database for the session Repository Component
information

174

IDEA Component Make the session information human | IDEA Component

readable
IDEA Component Place the session information in a IDEA Component
window for the user
IDEA User Select Print or Save of the session IDEA Component
information
IDEA Component Process the user's save action IDEA Component
IDEA Component Inform the user of inability to save IDEA User
L
N IDEA CSM
Component Component
: IDEA USer -——L +W,_-

| !
1 1: View session result information ;
| :

2: Query session information

3: Format session iﬁ\formafion for readability

<] .
4: Create view window for information
<] i

|

5: Save or pri fhe information

6: Process request ‘
P '

7: Close informatibn wiﬁc{ow ‘
U N
L] Unable to

process !

l]
x
| |
'i | request 1
| |

Figure 4-34 - Unable to save

5 Repository Model Use Cases
This section describes various operations for CSM layer design.
A CSM model is composed of well-defined layers, nodes, and node attributes.

Layers represent a part of the physical makeup of a system. Layers are composed of nodes. For example, a
Physical-type layer may be composed of PC-type nodes. The individual nodes may connect to nodes (e.g.
Hub-type nodes) existing on other layers as well as nodes existing on the same layer. Layers are not connected
to other layers.

Nodes represent similar items that compose layers. Node attributes represent the state of the nodes.

The data-mode! used to represent layers, nodes, and node attributes is shown in Figure Eight.

aNodeLayer aNock

/ \
/ X
/ .
/ \
1 / \
’ \\
/ \
/

¢ Layer

1

aNoaeAttribute NodeAttri bu‘rej

v /
/ remoteNoge ‘ /
"_‘ /oca/Noc#

Figure 5-1 - Data Model Diagram

This section presents use cases for defining layers, nodes, attributes, as well as use cases for modifying the
model.

176

5.1 Use Case Get Session List

IDEA Component Get Sesssion List

(from Actors)

Figure 5-2 Get Session Lists Use Case

5.1.1 Brief Description

This use case describes how a user gets a list of sessions from the repository.

5.1.2 Pre-Conditions
The CSM has been installed and configured.

Sessions exist within the repository.
5.1.3 Flow of Events

5.1.3.1 Start of use case

This use case starts when it is necessary to retrieve a list of sessions from the repository.

5.1.3.2 Basic Flow

1. Query for list

Query the database for a list of available (unlocked) sessions.
2. Select list

The repository component selects the sessions from the database.

5.1.3.3 End of use case

This use case ends when the user is provided the list of sessions.

177

5.1.3.4 Alternative Flows
5.1.4 Post-Conditions

5.1.5 Scenario Diagrams

5.1.5.1 Scenario 1 - Basic flow

Table 5-1 - Get Session List Scenario 1

Initiator

Behavior

Target

IDEA User

Tell the IDEA Component to get a
list of sessions (all sessions, sessions
ready for discovery, scanning,
analysis, or fuzzy analysis)

IDEA Component

IDEA Component

Get a list of sessions from the
repository

Repository Component

IDEA Component Display the session to the user IDEA User
IDEA User IDEA Component CSM Component Reposi tory

L1: get alist of sassions‘

{ 1

1
i |

2: getalist of sessions|

i
: 13: get a list of sessionsl

S ,A,A_,,,,~,,A.,A_A__>, "
|
i
E \ i
T | | l
1 l | !
I | \ |
l l l |
Figure 5-3 - Basic Flow
5.1.5.2 Scenario 2 - No sessions available
Table 5-2 - Get Session List Scenario 2
Initiator Behavior Target
IDEA User Tell the IDEA Component to get a IDEA Component

list of sessions (all sessions, sessions
ready for discovery, scanning,
analysis, or fuzzy analysis)

178

IDEA Component Get a list of sessions from the Repository Component
repository .
Repository Component No sessions available IDEA Component
IDEA Component No sessions available IDEA User
IDEA User IDEA Component CSM Component | | | Rggc; ------ snfo_g HHHHHH B

i
. 1:getalist of sessions

2: get a list of sessions

3: get a list of sessions |

-

No sessions ik

available !

Figure 5-4 - No sessions available

In step 1, the Repository component reports that there are no sessions available. The user is informed that no
sessions are available (as opposed to no sessions exist), and the use case ends.

There are two reasons why sessions may not be available: 1) there are no sessions in the database, 2) the user is
trying to open a session for write, and all available sessions are already open for writing.

5.1.5.3 Scenario 3 - Unable to find database

Table 5-3 - Get Session List Scenario 3

Initiator Behavior Target

IDEA User Tell the IDEA Component to geta | IDEA Component
list of sessions (all sessions, sessions
ready for discovery, scanning,
analysis, or fuzzy analysis)

IDEA Component Get a list of sessions from the Repository Component
repository

Repository Component Database error IDEA Component

IDEA Component Database error IDEA User

179

IDEA User IDEA Compornent CSM Component Reposi tory
' |
' |
1: get a list of sessions
2: get alist of sessions
>t .
| f
|
3: get alist of sessions |
|
l ;
i '
: " Unable to finda ©.. |
o i database \
! ! —
|

Figure 5-5 - Unable to find a database

In step 2, the Repository component reports that it cannot connect to the database. The user is informed of the
existence of a database error and the use case ends.

180

5.2 Use Case Open Session

.....

IDEA Component Open Session

(from Actors)

Figure 5-6 - Open Session

5.2.1 Brief Description

In this use case, the IDEA system allows users to run tools against a session.

5.2.2 Pre-Conditions
The session exists and has been properly configured as described in the TBI section.

The session must have been created in the database.
5.2.3 Flow of Events

5.2.3.1 Start of use case
This use case starts when the IDEA User selects the GUI options necessary to map, populate, scan, analyze or

fuse a session's information.

5.2.3.2 Basic Flow

1. Get the sessions

The IDEA component is directed, by IDEA User interaction, to get the list of sessions available for discovery,
scanning, analysis, or fuzzification. The use case Get Session List shows the flow of this step.

2. Query the database for the session

A query to the database is made to retrieve the specified session with the available tools for the context
selected in step 1.

o If the context is discovery a list of discovery tools for the session is returned.
e If the context is scan, a list of scanning tools for the session is returned.
o If the context is analyze, a list of analysis tools for the session is returned.

o If the context is to apply fuzzy fusion, a list of fuzzification tools for the session is returned.

3. Choose the session

The list of sessions returned from the database is presented to the IDEA User. The IDEA User has the option
to select, from the list of sessions, one session to launch.

“ 181

5.2.3.3 End of use case

The session information is checked out for this user - the session is locked. This ensures that the tool's data is
not modified by other users.

Use case ends.

5.2.3.4 Alternative Flows

5.2.3.4.1 1a. User cancels

In Steps 1, 3, and 5 the user has the option to cancel the operation. If the user chooses to cancel, the use case
ends.

5.2.3.4.2 2a. No sessions in the database

In Step 2, if no sessions matching the tool criteria are found within the database the user is informed. This ends
this use case.

5.2.3.4.3 2b. Database not found

In Step 2, if there is an error communicating with the database, the event is logged, the user informed and the
use case ends.
5.2.4 Post-Conditions

5.2.5 Scenario Diagrams

5.2.5.1 Scenario 1 - Basic flow

Table 5-4 - Open Session Scenario 1

Initiator Behavior Target

IDEA User Select a session to open. Specify IDEA Component
read-only or read-write.

IDEA Component Query the database for the session. Repository Component

Repository Component If the session is locked then we can | Database

only open read-only.
If the session is unlocked, lock it.

Get the session information.

182

/

P
e

IDEA CSM Repository
: IDEA User Component Component

1 Open session for read “
A 2: Find the session

. i
3: Open session for read |

|

T |
#: Open session for write :

5: Find the session L6: Open session for write f

—_—— e — —
et e o

Figure 5-7 - Basic flow

5.2.5.2 Scenario 2 - User cancels

Table 5-5 - Open Session Scenario 2

Initiator Behavior Target

IDEA User User cancels operation. IDEA Component

Figure - User cancels

5.2.5.3 Scenario 3 - No session in the database

Table 5-6 - Open Session Scenario 3

Initiator Behavior Target

IDEA User Select a session to open. Specify IDEA Component
read-only or read-write.

IDEA Component Query the database for the session. Repository Component

Repository Component Session not found IDEA Component

IDEA Component Session not found IDEA User

Figure - No session in the database

5.2.5.4 Scenario 4 - Database not found

Table 5-7 - Open Session Scenario 4

Initiator Behavior Target

IDEA User Select a session to open. Specify IDEA Component

read-only or read-write.

IDEA Component Query the database for the session. Repository Component
Repository Component Database error IDEA Component
IDEA Component Database error IDEA User

Figure - Database not found

184

5.3 Use Case Close Session

IDEA Component Close Session

(from Actors)

Figure 5-8 - Close Session Use Case

5.3.1 Brief Description

In this use case, the IDEA system closes an opened session.

5.3.2 Pre-Conditions

Before this use case starts, the session must have been opened as detailed in the Open Session use case.
5.3.3 Flow of Events

5.3.3.1 Start of use case

This use case starts when it is necessary to close an opened session. This use case follows session discovery,
scanning, analysis, and fuzzy fusion analysis and occurs after the external tools have updated the session's
information.

5.3.3.2 Basic Flow

1. Unlock the session

Unlock the session prior to closing it or during the closing of it.

5.3.3.3 End of use case

After the tool information has been stored in the database the user is informed of a successfully completed
operation. After the user acknowledges the operation complete the use case ends.

5.3.3.4 Alternative Flows

5.3.3.4.1 Session is not open

If the session is not open, ignore the request.

5.3.4 Post-Conditions

5.3.5 Scenario Diagrams

5.3.5.1 Scenario 1 - Basic flow

Table 5-8 - Close Session Scenario 1

Initiator Behavior Target

IDEA Component Noti.fy the database to unlock the Repository Component
session

Repository Component Unlock the session Repository

Repository Component Session unlocked IDEA Component

IDEA Component Session unlocked IDEA User

Figure - Basic flow

5.3.5.2 Scenario 2 - Session is not open

Table 5-9 - Close Session Scenario 2

Initiator Behavior Target

IDEA Component Noti.fy the database to unlock the Repository Component
session

Repository Component Unlock the session Repository

Repository Component Session not locked IDEA Component

IDEA Component Session unlocked IDEA User

Figure - Session is not open

186

5.4 Use Case Manage Session

V2R
7

y —
\T/ l/' N

i W 3

/. \ ' \‘\.-__.m.,_-—//

Session Admi ni strator Manage Session

(from Actors)

Figure 5-9 - Manage Session Use Case

5.4.1 Brief Description

This use case describes how a user performs CRUD operations on a session.

5.4.2 Pre-Conditions

Configuration of the repository must be completed prior to this use case.
5.4.3 Flow of Events

5.4.3.1 Start of use case

This use case starts when a user elects to create, read, update, or delete a session.

5.4.3.2 Basic Fiow

1. Choose Create operation

The user opts to perform one of the following functions. For each function, the user provides a session name.
A valid session name may be retrieved using the Get Session List use case, or, for the create session operation,
the user provides one.

Create - to create a session, the user enters a session name.
2. Instantiate a session

A message is sent to the Repository component to create a new entry for the session. The name of the session
is provided to the Repository.

The Repository, guided by its configuration, creates a new entry for the session.

5.4.3.3 End of use case

This use case ends by performing the Close Session use case.

5.4.3.4 Alternative Flows

1a. Choose Read operation

187

In step 1, the user selects read instead of create. The session is opened for read and presented to the user.
This use case ends with Close Session.

1b. Choose Update operation

In step 1, the user selects update instead of create. The session, if unlocked, is opened and locked and the user
allowed to make changes. After the changes are made the user has the ability to save or discard the changes.

This use case ends with Close Session.
1c. Choose Delete operation

In step 1, the user selects delete instead of create. The session, if unlocked and if its repository state allows
deletion, is deleted from the database. The TBI section describes the criteria for deleting sessions.

This use case ends with Close Session.
1d. Session already exists

In step 1, if the user provides a session name that already exists in the database, the user is informed that the
session name provided already exists.

le. Session does not exist

Instep 1, or la, 1b, or lc, if the user provides a session name that does not exist in the database, the user is
informed and the use case restarts.

1f. Cancel

For Create, the user can cancel before the session is created - prior to step 2.

For Read, the user can cancel prior to the read operation - prior to alternate step la.

For Update, the user can cancel prior to saving the updated session - in alternate step ib.
For Delete, the user can cancel prior to alternate step 1c.

2a. Cannot instantiate

In step 2, if Repository component errors prevent the instantiation of the session the user notified and the use
case ends.

5.4.4 Post-Conditions

For Create, the session is created in the database.

For Read, the session is unchanged in the database.

For Update, the session information is updated in the database.

For Delete, the session no longer exists in the database.
5.4.5 Scenario Diagrams

5.4.5.1 Scenario 1 - Basic flow

Table 5-10 - Manage Session Scenario 1

Initiator Behavior Target
IDEA Administrator Open Session Manager IDEA Component
IDEA Administrator Perform Create operation on a IDEA Component

188

session
IDEA Component Execute the Create operation IDEA Component
IDEA Administrator Exit the Session Manager IDEA Component
Figure - Basic flow
5.4.5.2 Scenario 2 - Choose Read operation
Table 5-11 - Manage Session Scenario 2
Initiator Behavior Target
IDEA Administrator Open Session Manager IDEA Component
IDEA Administrator Perform Read operation on a session | IDEA Component
IDEA Component Execute the Read operation IDEA Component
IDEA Administrator Exit the Session Manager IDEA Component
Figure - Choose Read operation
5.4.5.3 Scenario 3 - Choose Update operation
Table 5-12 - Manage Session Scenario 3
Initiator Behavior Target
IDEA Administrator Open Session Manager IDEA Component
IDEA Administrator Perform Update operation on a IDEA Component
session
IDEA Component Execute the Update operation IDEA Component
IDEA Administrator Exit the Session Manager IDEA Component
Figure - Choose Update operation
5.4.5.4 Scenario 4 - Choose Delete operation
Table 5-13 - Manage Session Scenario 4
Initiator. Behavior Target

189

IDEA Administrator

Open Session Manager

IDEA Component

IDEA Administrator Perf.orm Delete operation on a IDEA Component
session

IDEA Component Execute the Delete operation IDEA Component

IDEA Administrator Exit the Session Manager IDEA Component

Figure - Choose Delete operation

5.4.5.5 Scenario 5 - Session already exists

Table 5-14 - Manage Session Scenario 5

Initiator Behavior Target

IDEA Administrator Open Session Manager IDEA Component

IDEA Administrator Perform Create operation on a IDEA Component
session

IDEA Component Execute the Create operation IDEA Component

Repository Component

Execute the Create operation

Database

Database

Session exists

Repository Component

Repository Component

Session exists

IDEA Component

IDEA Component Sesston exists IDEA Administrator

Figure - Session already exists

5.4.5.6 Scenario 6 - Session does not exist

Table 5-15 - Manage Session Scenario 6

Initjator Behavior Target

IDEA Administrator Open Session Manager IDEA Component

IDEA Administrator Perform Read, Update, or Delete IDEA Component
operation on a session

IDEA Component Execute the Read, Update, or Delete | IDEA Component
operation

Database Session does not exist Repository Component

Repository Component

Session does not exist

IDEA Component

IDEA Component

Session does not exist

IDEA Administrator

Figure - Session does not exist

5.4.5.7 Scenario 7 - Cancel

190

Table 5-16 - Manage Session Scenario 7

Initiator Behavior Target
IDEA Administrator Cancel operation IDEA Component
IDEA Component End operation IDEA Component

Figure - Cancel

191

6 Model Preparation Use Cases

These use cases focus on the initial preparations to make prior to running the System Analysis Use Cases.
Tool running - user define list for tool order

How much leeway will the user have in picking the order?

1) Order tools within their category only (discovery, scanner, ...)

2) Order tools outside of their category (may have analysis before discovery, etc.)
Tool information (for each tool)

How to map the tool needs to the information contained within the session

How to map the tool results back into the session

192

6.1 Use Case Configure Tool

/\ hS s

Administrator Configure Tool

(from Actors)

Figure 6-1 - Configure Tool Use Case

6.1.1 Brief Description

Tool configuration is the one-time process of integrating IA tools with IDEA. IDEA stores and maintains the
information used by and generated by the IA tools.

This use case provides functionality for new tools to be integrated into the suite of IDEA tools. IDEA requires
launch behavior for the tool. IDEA also maps the session information to the tools data format. Each tool
requires a different launch protocol, a different data format, and different CSM information. Tool
configuration consists of identifying CSM information required by a tool, the format of the data, and the
method for launching the tool with the information.

During tool configuration the IDEA Administrator decides what additional information the tool will require
and tailors how it will collect the information (from another tool, from the user).

6.1.2 Pre-Conditions
There are four tool types - Discovery, Scanner, Analysis, Fuzzy Fusion
The CSM information exists.

If required, a mapping between CSM model and Tool model exists.
6.1.3 Flow of Events

6.1.3.1 Start of use case
The IDEA Administrator chooses to open the tool configuration manager.

The tool configuration manager allows the administrator to configure new tools for IDEA. The tool
information is filled out and saved to the repository.

6.1.3.2 Basic flow
1. Select the type of tool to configure

The IDEA Administrator chooses the type of tool to configure: one of Discovery, Scan, Analysis, or Fuzzy
Analysis.

2. Get the tool information

The tool information dialog allows the IDEA Administrator to insert information about the tool. Refer to the
appendix on tool information for the fields.

3. Select the CSM information needed by the tool

193

The IDEA Administrator selects which repository information is needed by the tool and selects it.
4. Select the Tool to Repository component interaction protocol

The IDEA Administrator chooses the protocol by which the tool will interact with the repository.
5. Save the tool configuration

The IDEA Administrator saves the tool configuration.

6.1.3.3 End of use case

This use case ends when the tool configuration is saved to the repository.

6.1.3.4 Alternative flows

1a. User cancels

Instep 1,2, 3,4, and 5 the IDEA Administrator has the option to cancel the operation. The use case ends.
2a. No tool information exists

In step 2, if the tool information for the type of tool selected by the IDEA Administrator is unavailable within
the repository, the IDEA Administrator is notified and the use case ends.

2b. No database available

In step 2, if the repository is unavailable, the IDEA Administrator is notified of the problem and the use case
ends.

3a. No database available

In step 3, if the repository is unavailable, the IDEA Administrator is notified of the problem and the use case
ends.

6.1.4 Special Requirements
6.1.5 Post-Conditions

6.1.6 Scenarios

194

6.2 Use Case Assign Tool

Admi ni strator Assign Tool

(from Actors)

Figure 6-2 - Assign Tool Use Case

6.2.1 Brief Description

The IDEA Administrator has the capability to assign configured tools to a session. After a session is identified,
a tool is selected and added to the session's tool list. Multiple tools may be selected. The session is saved after
tool selection is complete.

6.2.2 Pre-Conditions
Sessions exist within the database.

Tools that will be assigned have been configured.
6.2.3 Flow of Events

6.2.3.1 Start of use case

This use case starts when the IDEA Administrator selects the assign tool operation from the Repository API.

6.2.3.2 Basic flow

1. Open the Repository session list

Get a list of sessions from the repository.

2. Select session to configure

Select, from the list, a session to configure.

3. Open tool List

Get a list of configured tools from the repository.
4. Select tool(s) for the session

Select the tools to apply to the session. Add them to the session list.
5. Specify tool execution order

Specify when each tool will be executed.

6. Close session configuration

Save the session configuration to the repository. »

195

6.2.3.3 End of use case

This use case ends when the session has been saved.

6.2.3.4 Alternative flows

1a. User cancels

Instep 1, 2, 3, 4, 5, and 6 the IDEA Administrator has the option to cancel the operation. The use case ends.

2a. No tool information exists

In step 2, if the tool information for the type of tool selected by the IDEA Administrator is unavailable within
the repository, the IDEA Administrator is notified and the use case ends.

2b. No database available

In step 2, if the repository is unavailable, the IDEA Administrator is notified of the problem and the use case
ends.

3a. No database available

In step 3, if the repository is unavailable, the IDEA Administrator is notified of the problem and the use case
ends.

6.2.4 Special Requirements
6.2.5 Post-Conditions

6.2.6 Scenarios

196

6.3 Use Case Assign Profile

Figure 6-3 - Assign Profile Use Case

6.3.1 Brief Description

The IDEA Administrator has the capability to assign security profiles to a session. After a session is identified
a profile is selected and added to the session's profile list. Multiple tools may be selected. The session is saved
after tool selection is complete.

i

6.3.2 Pre-Conditions
Sessions exist within the repository.

Profiles that will be assigned have been defined.
6.3.3 Flow of Events

6.3.3.1 Start of use case

This use case starts when the IDEA Administrator selects the assign profile operation from the Repository
APL

6.3.3.2 Basic flow

1. Open the Repository session list

Get a list of sessions from the repository.

2. Select session to configure

Select, from the list, a session to configure.

3. Open profile List

Get a list of pre~-defined profiles from the repository.

4. Seiect profile(s) for the session

Select the profile(s) to apply to the session. Add them to the session list.
5. Close session configuration

Save the session configuration to the repository.

6.3.3.3 End of use case

This use case ends when the session has been saved.

6.3.3.4 Alternative flows

1a. User cancels

Instep 1,2, 3,4, 5, and 6 the IDEA Administrator has the option to cancel the operation. The use case ends.

2a. No tool information exists

197

In step 2, if the tool information for the type of tool selected by the IDEA Administrator is unavailable within
the repository, the IDEA Administrator is notified and the use case ends.

2b. No database available

In step 2, if the repository is unavailable, the IDEA Administrator is notified of the problem and the use case
ends.

3a. No database available

In step 3, if the repository is unavailable, the IDEA Administrator is notified of the problem and the use case
ends.

6.3.4 Special Requirements
6.3.5 Post-Conditions

6.3.6 Scenarios

198

6.4 Use Case Prompt Analyst

I O

;/ \/ (I3 ~ ’
/\ N y
Analyzer Prompt Analyst

(from Actors)

Figure 6-4 - Prompt Analyst Use Case

6.4.1 Brief Description
Prompt the analyst for addition information needed to fill out the CSM or other tool-specific information prior
to running scan or analysis tools.

6.4.2 Flow of Events

6.4.2.1 Basic Flow

Table of Actor Steps and Use Case Support

Actor Steps Use Case Support

—

Analyze missing data

D

Open dialog

w

Ingest dialog results

6.4.2.2 Alternative Flows
6.4.3 Special Requirements
6.4.4 Pre-Conditions

6.4.5 Post-Conditions

6.4.6 Scenarios

199

7 Repository Sessions

Within the Repository Component is the database. This database is used to store session information (system
models) defined by a user and filled with a discovery tool. The session information is provided to scan and
analysis tools. The results of the tools go back into the session as tool results. Fuzzy fusion takes these tool
results and generates a system vulnerability level.

A session is a named (internally-named) set of data records that comprise a model, a suite of tools with which
to test the model, and the results of those tests.

There are three stages to the session.
<Name>.a.b

Where <Name> represents the name of the session. ".a" is represented as a integer value and its presence
implies that a mode! is defined either by running a discovery tool or manual entry. ".b" is represented as a
integer value and its presence implies that a suite of tools has been assigned to analyze the model. There may
be tool results available for a <Name>.a.b session.

7.1 Schemas

e aNodel. ayer alNode
Lﬁyer /,....,,_,A......,.._.A.._ e e - \
1
1 \
/ \
“\'\ 1
N
aNode aNodeAt tribute _|Nodeattribute
11
/oca/Noc!’k
Figure 7-1 - Data Model Diagram
71.1 Layer
Table 7-1 - Layer
Entry Description
Name String representing the layer's
unique name.

Layer Type | The type of the layer

Node Type A list of the types of nodes which a
List layer may contain.

The type of layer determines possible node types that can exist on it. This table is a mapping for layer types to
node types.

Layers defined of a particular type can contain only nodes of the type in the Node Type List.

7.1.2 Node

Table 7-2 - Node

Entry Description

Name String representing the node's

unique name

Node Type The type of the node

Remote List of nodes this node interacts
Node Type with that are not part of this layer.
List

Attribute The type of attribute a Node can
Type have

The type of node determines the node network syntax. Nodes of a certain type can only be linked with nodes
of a certain type. This table is a mapping of which nodes can be linked to other nodes.

7.1.3 Attributes
Table 7-3 - Attributes

Entry Description

Name String representing a unique name.
Type

State

201

8 Logical View

This section describes the static view of IDEA showing the component-level use cases for the IDEA,
Repository, and Tool components and the class diagrams supporting the use cases.

8.1 Threads - Component-Level Use Cases

This section describes the component-level use cases, termed software threads. Software threads describe the
behavior of each component as it responds to external commands via the component's interface.

Each of the three components, IDEA, Repository, and Tool, define an interface that clients of the component
may use to invoke component behavior. IDEA Users interact with the IDEA application using the IDEA
Component's API. The IDEA Component API provides operations to support network design and analysis
including Fuzzy Fusion analysis.

The API of the Tool component is designed solely for use by the IDEA component. The Repository
component API is required by both the IDEA and Tool components as well as a possible Repository GUI.

The threads described below detail the class and data interactions of each APIL.

8.2 Use Case to Thread Mapping

The following table maps the software threads described in this section to the system-level use cases described
above.

Table 8-1

Use Case Thread QC

Launch Tool Get Investigation List
Open Investigation
Start Investigation
Save Investigation

Close Investigation

Launch Discover Tool Get Investigation List
Open Investigation
Start Investigation
Save Investigation

Close Investigation

Launch Scan Tool Get Investigation List
Open Investigation
Start Investigation
Save Investigation

Close Investigation

Launch Analysis Tool Get Investigation List

Open Investigation

202

Start Investigation
Save Investigation

Close Investigation

Launch Fuzzy Fusion Analysis Get Investigation List
Open Investigation
Start Investigation
Save Investigation

Close Investigation

View Results Get Investigation List

View Investigation

Get Session List Fetch Session List
Open Session Open Session
Close Session Close Session
Manage Session Save Session

View Session
Copy Session
Delete Session

Rename Session

Configure Tool TBI

Assign Tool Fetch Session List
Open Session

Fetch Tool Information
Assign Tool

Save Session

Close Session

Assign Security Profile Assign Profile

Prompt Analyst TBI

8.3 IDEA API Threads

8.3.1 Get Investigation List

8.3.1.1 Brief Description

This use case allows clients external to the IDEA API (IDEA User) to get a list of possible investigations set
up in the Common System Model.

8.3.1.2 Pre-Conditions

System configured.

8.3.1.3 Flow of Events

8.3.1.3.1 Start of use case

This use case starts when the client requests a list of investigations from IDEA. The client passes as a
parameter the kind of investigation required. Investigation kinds are: Map, Populate, Analysis, and Fuse. The
kind A/l is used to request all investigations.

8.3.1.3.2 Basic flow
1. Get the session list

Get the session information from the Repository Component.

8.3.1.3.3 End of use case

This use case ends when the client receives the list of investigations.

8.3.1.3.4 Alternative flows

1a. Investigation not found

In step 1, if no list of investigations is found, status is returned. The use case ends.
1b. Database error

If there is a problem retrieving the list of investigations, status is returned. The use case ends.

8.3.1.4 Post-Conditions

The client has a list of strings representing the names of the investigations of the requested kind that are
available within the repository.

8.3.1.5 Special Requirements

1. Return status

Table 8-2

Returned Value Function

Database Error

Investigation Not Found

Successful Completion

8.3.1.6 Collaboration Diagrams

client : IDEAAPT 2 RepositoryAPT

1: getInvestigationList() 2: fetchSessionList()

[T > ________ >,
kind O3> kind O3>
<“O status H IIST Of Signufurgs

<< list of signatures

o
o
N

8.3.2 Open Investigation

8.3.2.1 Brief Description

This use case is responsible for allowing clients to open an existing investigation for mapping, populating,
analyzing, or fusing.

8.3.2.2 Pre-Conditions
System configured.

The investigation exists.

8.3.2.3 Flow of Events

8.3.2.3.1 Start of use case

This use case starts when the clients calls the openlnvestigation method of the IDEAAPIL. The client passes, via
parameters, the string name of the investigation.

8.3.2.3.2 Basic flow

1. Create an investigation instance

An object to store the investigation information is instantiated.
2. Get session

The session information is retrieved from the Repository Component. The Repository Component returns the
session information wrapped within an instance of the Session class.

3. Initialize the investigation instance

The investigation object is initialized with the session information.

4. Set the focus of the investigation instance

The focus of the investigation instance relates to the type of tools that will be launched when the launch
method is used. The focus is one of: Map, Populate, Analyze, Fuse, or All.

8.3.2.3.3 End of use case

This use case ends when status is returned notifying the client of the success or failure of the operation.

8.3.2.3.4 Alternative flows
2a. Session not found in the repository

In step 2, the session that was requested was not found in the repository. Status is returned and the use case
ends.

2b. Database error

If there is a problem retrieving the list of investigations, status is returned. The use case ends.

8.3.2.4 Post-Conditions

The Investigation instance is ready to launch tools.

8.3.2.5 Special Requirements
1. Control parameters

There are five parameters for controlling the behavior of an investigation.

Table 8-3

Control Parameter Function

Map Setup the network by adding the network information
to the investigator.

Populate Scan the network for configuration information and
fill out the investigation.

Analyze Analyze the network information for vulnerabilities.

Fuse Run Fuzzy Fusion analysis on the analysis
information and update the investigation.

All Run the full suite of capabilities for the investigation.

2. Return status

Table 8-4

Returned Value 'Function

Database Error

Information Not Found

Successful Completion

uonesysaauy uadQ - [-8 ans1g

() 0406 U SDAUY

G
()puaddo :g
ST — S —.

ss0}2 uo pb1ysAAUT U0}
G SN0 SaW02q 2unypub 15 |

208

24n4oubi1SD
- S <O Lo UOISSISD <) 2angOUB IGUOISSIS YL

()snaoqas i/ (Daunyoub 15185 19 (Juoissagyas ig [S _ (Juoyobusanuguado:g _ B—
oSO | GBI WO 6 SR T | TawvaaL | Wi
. . i UU:U+E m O v U — JO— S B]

7 SYDYS ()->

(Juoyobysaau] 4 () BangOUG IS

(Yuouob ysaauguado :j

TdvAdoriseday T

aunjoubiguoissasayy O-——>>
<0 aJryoubis

A|||l.

{)uoissaguado :2

sweibeiq uoneloqe|jod 9°Z°¢'8

8.3.3 Start Investigation

8.3.3.1 Brief Description

This use case allows the client to launch COTS or other external tools for the purposes of mapping, populating,
analyzing, or fusing the session information.

8.3.3.2 Pre-Conditions

The investigation has been opened.

8.3.3.3 Flow of Events

8.3.3.3.1 Start of use case

This use case starts when the client calls the IDEAAPI startInvestigation method.

8.3.3.3.2 Basic flow
1. Launch the tool

The IDEAAPI has the investigation manager launch the investigation. The investigation tells its session to
launch. The session gets the list of possible tools to launch for its particular focus (Map, Populate, Analyze,
Fuse, or All) and, one tool at a time, launches it.

8.3.3.3.3 End of use case

This use case ends when the client is informed of the status of the startInvestigation operation.

8.3.3.3.4 Alternative flows

1a. No tool to launch

In step 1, if there are no tools to launch, status is returned and the use case ends.
1b. Unable to launch tool

In step 1, if there is insufficient information to launch the tool, or for any other reason (i.e. incorrect
configuration) status is returned and the use case ends.

8.3.3.4 Post-Conditions

8.3.3.5 Special Requirements

1. Return status

Table 8-5

Returned Value Function

209

No Launch Tool

Unable to Launch Tool

Successful Completion

8.3.3.6 Collaboration Diagrams

4: getInvestigator()

O
<-0
i Invesn gcm onManager
2: launch()
: IDEAAPT : Investigator
1: startInvestigation() R 3¢ faunchTool()
signature O——>> kird
< status session O---2>

Figure 8-2 - Start Investigation

8.3.4 Save Investigation

8.3.4.1 Brief Description

This use case allows the client to save new information gathered after an investigation has been started. The
new information will be stored into the database.

8.3.4.2 Pre-Conditions

The investigation has been started.

8.3.4.3 Flow of Events

8.3.4.3.1 Start of use case

This use case starts when the client calls the IDEAAPI savelnvestigation method.

8.3.4.3.2 Basic flow

1. Save investigation

The IDEAAPI has the investigation manager save the investigation. The investigation tells its session to save
the information. The session saves its data to the repository.

8.3.4.3.3 End of use case

This use case ends when the client is informed of the status of the saveInvestigation operation.

8.3.4.3.4 Alternative flows

1a. Unable to save

If there is a problem saving the information, the client is informed via the return status of the operation.

8.3.4.4 Post-Conditions

Successful execution of this use case will ensure that the investigation's information is saved with the
repository. '

8.3.4.5 Special Requirements

1. Return status

Table 8-6

Returned Value Function

Unable to Save

Successful Completion

211

8.3.4.6 Collaboration Diagrams

2: getInvestigator()

0>
<O

client

1: saveInvestigation()
signature .- >>
<< status

3: save()

Cmeae 7 [

: Investigator |

...+ Investigati onManager

;.- RepositoryAPT

4: saveSession()

%
sessionSignature O—2>

Figure 8-3 - Start Investigation

212

8.3.5 Close Investigation

8.3.5.1 Brief Description

This use case allows the client to close the investigation.

8.3.5.2 Pre-Conditions

The investigation exists within the database.

8.3.5.3 Flow of Events

8.3.5.3.1 Start of use case

This use case starts when the client calls the IDEAAPI closelnvestigation method.

8.3.5.3.2 Basic flow

1. Close the investigation

The IDEAAPI has the investigation manager close the investigation. The close behavior is propagated to the
database where the session information was locked.

8.3.5.3.3 [End of use case

This use case ends when status is returned to the client.

8.3.5.3.4 Alternative flows
1a. Investigation not open

If the investigation is not open status is returned and the use case ends.

1b. Not owner.

If the client is not the owner of the investigation, status is returned and the use case ends.

l1c. Not saved.
If the investigation has not been saved yet, the client will have status returned showing that the investigation
was not unlocked.

8.3.5.4 Post-Conditions

The investigation information is unlocked.

8.3.5.5 Special Requirements

1. Unlock Session

If the investigation was opened for writing the investigations data will be unlocked.

2. Control parameters

There shall be parameters to control the closing of the investigation.

Table 8-7 Control Parameters

Control Parameter Function

Force Close If the investigation is not saved, or was left open, the
presence of this parameter allows the investigation to
be successfully closed.

If the investigation's repository is locked, this
parameter will allow the database to, if possible,
unlock the data.

Don't Save The presence of this parameter allows the
investigation to close the database without updating
the data.

3. Return status

Table 8-8

Returned Value Function

Investigation Not Open

Insufficient Privileges

Not Saved, Confirmation to Close Required

Successful Completion

214

8.3.5.6 Collaboration Diagrams

2: getInvestigator()

1: closeInvestigation() —
O-—i i nvestigatorSignature O-——>>
signature O >
1gnature <0 investigator
< status .
client : IDEAAPL : Investigati onManager
5: closeInvestigation()
signature O-——->
: Tnvestigator ..+ RepositoryAPT
3iclose() _
> 4: closeSession()
BN
session O--—2>

Figure 8-4 - Close Investigation

8.3.6 View Investigation

8.3.6.1 Brief Description
This use case allows the client to view the results of an investigation.

There are two different threads for viewing an investigation, one is if the session is empty and requires
information from the database. The other thread occurs after the session has retrieved tool results (after the
startInvestigation operation).

8.3.6.2 Pre-Conditions -

The client has picked out the investigation to view from an investigation list.

8.3.6.3 Flow of Events

8.3.6.3.1 Start of use case

This use case starts when the client calls the IDEAAPI viewInvestigation method.

8.3.6.3.2 Basic flow

1. Fetch investigation data

The investigation manager launches an investigation and gets session data for it from the repository.
2. View information

The information is placed in a location designated by the user.

8.3.6.3.3 End of use case

This use case ends when the information is written out for the client and status is returned.

8.3.6.3.4 Alternative flows

1a. Session already exists

In step 1, if the session exists and already has the information within it the investigator sends it the view
message and the use case continues to step 2.

1b. No information for the investigation

In step 1, if there is no information available in the database for the investigation, status is returned and the use
case ends.

1c. No investigation
In step 1, if the investigation does not exist, status is returned and the use case ends.
1d. Database error

In step 1, if there are problems getting the information from the database, status is returned and the use case
ends.

8.3.6.4 Post-Conditions

216

8.3.6.5 Special Requirements

1. Control parameters

The control parameters of this use case allow the client to specify which

Table 8-9

Control Parameter Function

View Map Results

View Populate Results

View Analysis Results

View Fuse Results

View All Results

2. Return status

Table 8-10

Returned Value Function

Database Error

No information for the investigation

No investigation

Successful Completion

8.3.6.6 Collaboration Diagrams

2: getInvestigator()

—>

signature

glient L IDEAAPT

1: viewInvestigation() ——

3:view()
O3>

5: openInvestigation()

signature O--2>
<—C0O status

... Investigator |

..+ InvestigationManager,

... RepositoryAPI

: 4 vieﬁ.séééion() h
o>
<—O

ido steps 5..8

. IDEAAPT

6: getInvestigator()

<0

: Investigati onManager

. _: Investigator

.. Reposi toryAPT

8.4 Repository API Threads
8.4.1 Thread Close Session

8.4.1.1 Brief Description

7:view()
»._.._..,,_>

.1 8 viewSession()

>

8.4.1.2 Pre-Conditions

8.4.1.3 Flow of Events

8.4.1.3.1 Start of use case

8.4.1.3.2 Basic flow

8.4.1.3.3 End of use case

8.4.1.3.4 Alternative flows

8.4.1.4 Post-Conditions

8.4.1.5 Special Requirements

1. Return status

Table 8-11

Returned Value Function

Database Error

No information for the investigation

No investigation

Successful Completion

219

8.4.1.6 Collaboration Diagrams

2: getSession()

sessionSignature O——>>

1: closeSession()

<—O session

. Sessi onManager’

>
sessionSignature O——>
client _:RepositoryAPT -
e | I #_ - 5: closeSession() 7
sessionSignature O-~-2>
| ssession . Database
3: unlock() l e 4: unlock() ‘
> e S
: key O—2>

Figure 8-5 - Close Session

8.4.2 Thread Create Session

8.4.2.1 Brief Description

This use case is responsible for allowing clients to create new sessions.

8.4.2.2 Pre-Conditions

8.4.2.3 Flow of Events

8.4.2.3.1 Start of use case

8.4.2.3.2 Basic flow

8.4.2.3.3 End of use case

8.4.2.3.4 Alternative flows

220

8.4.2.4 Post-Conditions

8.4.2.5 Collaboration Diagrams

repository :

client _.L_B_?«RQﬂ.IQL'XAEI,L ,,,,,,
1: createSession() 2: create()
%
Session Information O——2> Session Information O——>>

Figure 8-6 - Create Session

8.4.3 Thread Fetch Session List

8.4.3.1 Brief Description

8.4.3.2 Pre-Conditions

8.4.3.3 Flow of Events

8.4.3.3.1 Start of use case
8.4.3.3.2 Basic flow
8.4.3.3.3 End of use case

8.4.3.3.4 Alternative flows

8.4.3.4 Post-Conditions

8.4.3.5 Special Requirements

1. Return status

221

. _Database

Table 8-12

Returned Value

Function

Database Error

No information for the investigation

No investigation

Successful Completion

8.4.3.6 Collaboration Diagrams

client. _: RepositoryAPT repository :

. Database

1: fetchSessionList()

— >
kind O3>

< list of signatures

2: query()

< list of signatures

Figure 8-7 - Fetch Session List

8.4.4 Thread Fetch Tool Information

8.4.4.1 Brief Description

8.4.4.2 Pre-Conditions

8.4.4.3 Flow of Events

8.4.4.3.1 Start of use case

8.4.4.3.2 Basic flow

8.4.4.3.3 End of use case

8.4.4.3.4 Alternative flows

8.4.4.4 Post-Conditions

8.4.4.5 Special Requirements

1. Return status

Table 8-13

Returned Value Function

Database Error

No information for the investigation

No investigation

Successful Completion

8.4.4.6 Collaboration Diagrams

4: getSession()

: Sessi onMamgi%

client _t Reposi foryAPT : Session : Database.

1: fetchToolInformation() — R
S 2: getToolInformation() —>

,,,,,,,,,,,,,, O results
sessionSignature (@1)

toolSignature O-——>>
<—0O toolInformation

toolSignature O——2>
<O 1toolInformation

Figure 8-8 - Fetch Tool Information

223

8.4.5 Thread Fetch Tool List

8.4.5.1 Brief Description

8.4.5.2 Pre-Conditions

8.4.5.3 Flow of Events

8.4.5.3.1 Start of use case

8.4.5.3.2 Basic flow

8.4.5.3.3 End of use case

8.4.5.3.4 Alternative flows

8.4.5.4 Post-Conditions

8.4.5.5 Special Requirements

1. Return status

Table 8-14

Returned Value Function

Database Error

No information for the investigation

No investigation

Successful Completion

224

8.4.5.6 Collaboration Diagrams

2: getSession()

OS>

..+ Sessi onManager.

.. RepositoryAPT : Session -t Database
i 4:query() |

1: fetchToolList() 3: getToolList() E—
—> —_
kind O—2> kind O—=>

session O——=> <O list
<O list

Figure 8-9 - Fetch Tool List

8.4.6 Thread Open Session

8.4.6.1 Brief Description

8.4.6.2 Pre-Conditions

8.4.6.3 Flow of Events

8.4.6.3.1 Start of use case

8.4.6.3.2 Basic flow

8.4.6.3.3 End of use case

8.4.6.3.4 Alternative flows

8.4.6.4 Post-Conditions

8.4.6.5 Special Requirements

1. Return status

Table 8-15

Returned Value

Function

Database Error

No information for the investigation

No investigation

Successful Completion

8.4.6.6 Collaboration Diagrams

2: query()
>
<G SessionInformation
-,:Dq?abu,ng
7: lock T
T 4: Session()
i1 SessionManager |

1: openSession()
—_

signature O-—>> sessionInformation O-——2>>

<-— theSessionSignature

5: setInformation()‘

sessionInformation O---2>

3: openSession()
—>

i_: SessionList

6: append() e
key O-——>>
session O—2>

<—CO sessionSignature

Figure 8-10 - Open Session

220

i_i Session

8.4.7 Thread Save Session

8.4.7.1 Brief Description

This use case is responsible for allowing clients to save an existing session.

8.4.7.2 Pre-Conditions

8.4.7.3 Flow of Events

8.4.7.3.1 Start of use case

8.4.7.3.2 Basic flow

8.4.7.3.3 End of use case

8.4.7.3.4 Alternative flows

- 8.4.7.4 Post-Conditions

8.4.7.5 Collaboration Diagrams

1: saveSession()

sessionSignature O——>>

4: getSession()

b

: SessionManager

2: save()

: Reposi toryAPT —> : Session

3: update()
—>

: Database

Figure 8-11 - Save Session

227

8.4.8 Thread View Session

8.4.8.1 Brief Description

This use case is responsible for allowing clients to view an existing session.

8.4.8.2 Pre-Conditions

8.4.8.3 Flow of Events

8.4.8.3.1 Start of use case

8.4.8.3.2 Basic flow

8.4.8.3.3 End of use case

8.4.8.3.4 Alternative flows

8.4.8.4 Post-Conditions

228

8.4.8.5 Collaboration Diagrams

2: getSession()

................ >
O
<0

1: view Session() 3:view()
............ > —
O O
client _: Repository APT

: Session

: Database

If the session does not
 contain the latest

“information...

Figure 8-12 - View Session

8.4.9 Thread Copy Session

8.4.9.1 Brief Description

This use case is responsible for allowing clients to copy an existing session to a new session.

8.4.9.2 Pre-Conditions

8.4.9.3 Flow of Events

8.4.9.3.1 Start of use case

8.4.9.3.2 Basic flow

8.4.9.3.3 End of use case

229

8.4.9.3.4 Alternative flows

8.4.9.4 Post-Conditions

8.4.9.5 Collaboration Diagrams
8.4.10 Thread Delete Session

8.4.10.1 Brief Description

This use case is responsible for allowing clients to delete sessions.

8.4.10.2 Pre-Conditions

8.4.10.3 Flow of Events

8.4.10.3.1 Start of use case

8.4.10.3.2 Basic flow

8.4.10.3.3 End of use case

8.4.10.3.4 Alternative flows

8.4.104 Post-Conditions

8.4.10.5 Collaboration Diagrams
8.4.11 Thread Rename Session

8.4.11.1 Brief Description

This use case is responsible for allowing clients to rename existing sessions.

8.4.11.2 Pre-Conditions

230

8.4.11.3 Flow of Events

8.4.11.3.1 Start of use case

8.4.11.3.2 Basic flow

8.4.11.3.3 End of use case

8.4.11.3.4 Alternative flows

8.4.11.4 Post-Conditions

8.411.5 Collaboration Diagrams

8.4.12 Thread Fetch Session Information

8.4.121 Brief Description

8.4.12.2 Pre-Conditions

8.412.3 Flow of Events

8.4.12.3.1 Start of use case

8.4.12.3.2 Basic flow

8.4.12.3.3 End of use case

8.4.12.3.4 Alternative flows

8.4.12.4 Post-Conditions

8.4.12.5 Special Requirements

1. Return status

Table 8-16

Returned Value Function

Database Error

No information for the investigation

No investigation

Successful Completion

8.4.12.6 Collaboration Diagrams

8.5 Tool API Threads
8.5.1 Thread Launch Tool

8.5.1.1 Brief Description

8.5.1.2 Pre-Conditions

8.5.1.3 Flow of Events

8.5.1.3.1 Start of use case

8.5.1.3.2 Basic flow

8.5.1.3.3 End of use case

[\
[
o

8.5.1.3.4 Alternative flows

8.5.1.4 Post-Conditions

8.5.1.5 Special Requirements

1. Return status

Table 8-17

Returned Value

Function

Database Error

No information for the investigation

No investigation

Successful Completion

[\
(9]

15103

1dvAdop1soday i

[00], yduner] - €]-8 An31g

25103
T Mﬁmm_,u.uxu 1
o B (Younp| 5
: | siogwodsy s B
J4vAiogisoday ¢ { ZOIDLSUT[O0L 4
(JuoypwisojuTjoo 14424 01
<O NOUDMIONTIO0 < o wosss
* ? S1O3vuKY (Jyouno) :9
J— :]2OUDISUT|00}
\\\\\\ U0 14 DWW 0JUT |00} OE.\,V 6
2unyoubigiooy
<0
<=0 uo1sSas
Al\l\

(Juo ypwaayuT (00 (Y424 1L
PUDSULIO0 O

<= 2unyoubig|oos
[——

LT TU T - .

T
s O\.\O 015528
T N\.
H ” o P
TdvAdoyiseday : &L

....................... _

(Jis171001Y242)

234

o) UOISSIS
<O PUM

A: ““““““““ .
()j00youno] :¢

oS Q>
<—(Q anyoubis

()ieoLyauno :1

,ummgci_oo .r..
T G0UOE ST 00} ()
< () unoubis

(V_%tum 2

sweibejq uoneioqe}jon 9°'1's'g

8.6 Software Design

8.6.1 Packages

________________________ .

IDEA GUT |
(from IDEA Componenf)g,

IDEA Interface J
(from IDEA Component):‘

(from IDEA Componem)%’

Repository 6UT

IDEA Engine -

Tool Interface
(from Tool Component)

\[/
\/
\/

Tool Engine

(from Tool Cornponent)%

(from Repository Compoment). . _ _

Reposi tory Interface

(from Repository Compoment)

Reposi tory Engine

(from Repository Compoment)

A7
W/

]

Repository Database

(from Reposi tory Compoment)

Figure 8-14 - Component Architecture

[N
(U5)
wh

8.6.2 IDEA Component

The IDEA component is composed of classes supporting user interaction IA design and tool automation. The
IDEA Component contains an API within its user interface layer. External calls to IDEA features are
supported by the API.

The scope of this component is to route the user's requests to the Tool and Repository components.

The IDEA Component layer is designed to allow users to select and open vulnerability investigations for a
network. The mapping capability allows users to set up their network. The populating capability allows users
to gather network node information. The analysis capability allows users to analyze the network for
vulnerabilities. Fuzzy Fusion analysis is also supported.

8.6.2.1 IDEA API

As stated above, the IDEA API provides a set of operations intended to support vulnerability analysis of a
network. This section describes the IDEAAPI class.

8.6.2.1.1 Class Diagram

InvestigationManager
© (from IDEA Engine)

IDEAAPT

‘geﬂ.’nvesﬁ gationList()

‘openInves?i gation() e
®startInvesti gation() 1 0.1
®savelnvesti gation()
®closeInvesti gation()
®viewInvesti gation() ! 1

Qcloselnvesti gation()
‘openInvesﬁ gation()
‘getInves?i gator()

AN Investigator
\ (from IDEA Engine)

. %signafure |
N Rpsession: char |

‘Invesﬁgaﬁon() f
$.Investi gation()
‘setSession() ‘
‘sefSignafure() :
¥ aunch() :
‘se'rFocus()
®save()

iew()
$close() v
$map() ;

Figure 8-15 - IDEAAPI Class

The IDEAAPI class allows external clients to launch external tools such as discovery, scanning, and analysis
tools.

The IDEAAPI is designed to allow only string or other basic data types past the component boundary. Users
are provided a key, or investigation signature to use. This key ensures access to internally maintained
investigation information and is used in all IDEAAPI requests.

8.6.2.1.2 IDEA Error Return Codes

The minimal set of error return codes from the IDEAAP] are:
IA SUCCESS
TA DATABASE ERROR
IA_INVESTIGATION NOT FOUND
IA_INVESTIGATION_INFORMATION_NOT_FOUND
IA LAUNCH_TOOL NOT_ FOUND
IA_UNABLE TO_LAUNCH TOOL
IA _UNABLE TO_SAVE INVESTIGATION
IA _INVESTIGATION_ NOT OPEN
IA_INSUFFICIENT_ PRIVILEGES

IA CONFIRMATION REQUIRED

IA_INSUFFICIENT PRIVILEGES

8.6.2.1.3 getInvestigationList
NAME

getlnvestigationList - Get a list of investigations available to the client.
DESCRIPTION
The getInvestigationList command informs the IDEA Engine that a client wishes to select an investigation.
IAErrRetType getInvestigationList (
in investigationKind kind,

out list pSigList)

237

Argument Description

kind One of MAP, POPULATE, ANALYZE, FUSE, ALL.
pSiglList Pointer to a string list to place the names of investigations available for the client.
ERROR RETURN VALUE

IA _SUCCESS

IA_DATABASE ERROR
IA INVESTIGATION NOT_FOUND
IA_INSUFFICIENT PRIVILEGES

8.6.2.1.4 openlnvestigationList
NAME
openlnvestigationList - Select, from a list of possible investigations, one to open.

DESCRIPTION

The openlnvestigationList command informs the IDEA engine that the client is ready to perform operations
on the investigation. The mode is used to designate whether the investigation information requires locking so
that another client cannot modify the data.

IAErrRetType openlInvestigationList (
in investigationMode mode,
in string pName,

out string pSig)

Argument Description

mode One of READONLY or WRITE.

pName Pointer to a string that contains the name of the investigation to open.

pSig Pointer to a string that contains the key for the investigation. The client must use this key for

most interactions with the IDEAAPI.

ERROR RETURN VALUE
IA_SUCCESS
IA_DATABASE ERROR
IA_INVESTIGATION_INFORMATION_NOT_FOUND
IA_INSUFFICIENT_PRIVILEGES

8.6.2.1.5 startInvestigation
NAME

startInvestigation -

DESCRIPTION
The startInvestigation command launches the tools on the investigations tool list.
IAErrRetType startInvestigation (

in string pName)

Argument Description
pName Pointer to a string that contains the name of the investigation to start.
ERROR RETURN VALUE

IA SUCCESS

IA DATABASE ERROR
IA_INSUFFICIENT PRIVILEGES

8.6.2.1.6 savelnvestigation

8.6.2.1.7 closelnvestigation

8.6.2.1.8 viewInvestigation

8.6.2.2 IDEA Engine

The IDEA Engine layer is designed to interface between IDEAAPI clients and the Tool and Repository
components. The IDEA Engine layer depends upon the ToolAPI and the RepositoryAPI. Classes contained
within this layer support routing client requests to the other components.

Since each session is an object, IDEA is multi-user. The IDEA Component can handled multiple requests from
users. We have the potential to setup an IDEA server that handles requests from other users.

8.6.2.2.1 Class Diagram

N
IDEAAPT
(from IDEA Interface)

N
\a
Reposi toryAPT
(from Repository Interface)

. ®getTnvestigationList()

: ‘openInvesﬁgaﬁ on()
®startInvesti gation()
®savelnvesti gation()

: ‘closeInvesﬁgaﬁon()

®closeSession()
$createSessi on()
®fetchSessionli st()
$feichToolInformation()
’openSessi on{)

. ®viewInvestigation() N ®saveSession()
$createInvestigation() T ®fetchSessi onInformation()
‘ ‘mapInves'rigm‘i on() s e \0‘1 —— : ®fetchToollist()
. populateInvestigation() =) InvestigationManager Wi ew Session()
: ‘am|yzzInvesﬁgaﬁ on() <o
$useInvestigation() ®closelnvestigation()
Soperlnvestigation() |- o
~ $getlnvestigator) | 7 r Investigationlist
ot 1 0.1° ;
N ' ®getInvestigator() |
“ ’ $append() s
5 | I |
\ P 1
\ / |
\._\. "‘ // ‘
\‘\ ..._...__.,.___\l(i’__]i__._.__. S // l
\‘-.\ Investigator , // . 1
L &si gnature L oun
S &session: char
0.1 ™ ®Investigation() |
i ®-Investigation()
®seiSessi on()
‘Y - ®setSignature() |
J e - : ‘Icunch()
Tool APT - " ®setFocus()
(from Tool Interface) ®save()
: iew()
®aunchTool() - $close()
Sna

Figure 8-16 - IDEA Engine Layer

8.6.2.2.2 Class Descriptions

InvestigationManager

The role of the InvestigationManager class is to instantiate, store, and destroy Investigator objects. Investigator
objects are stored on a Map class - InvestigationList.

240

Investigator

The role of the Investigator class is to mirror the Repository Session class. Instances of Investigator contain a
key representing an instance of Session, as clients to the IDEAAPI are provided a key representing the
investigator instance. IDEAAPI calls are routed to appropriated Investigator instances. From the instance, the
message is routed to the Repository or Tool components by means of their respective API's.

InvestigationList

The role of the InvestigationList is to store investigation names (client readable) and provide dictionary/hash
access to them. The STL Map class is used for InvestigationList.

8.6.3 Repository Component

The Repository component is composed of classes supporting database storage and retrieval. The IDEA and

Tool component send requests via the RepositoryAPI and the classes within the Repository Engine layer
interact with the database.

8.6.3.1 Repository API

8.6.3.1.1 Class Diagram

241

®closeSession()
®createSessi on()
®fetchSessionlList() <
®etchToolInformati on() 1
’openSessi on()

®saveSessi on()
®fetchSessi onInformation()
®fetchToolList()

Wiew Session()

\/

0.1

Sessi onManager :
_(from Reposi tory Engine)

‘ge‘rSessi onList()
®closeSessi on()

T ‘saveSession()

0.1 iewSession()
‘openSessi on()
®getToolList()

: ’gefTooIInformaﬁ on() :
. ‘gefSession()

1

N Session ;
x;,,(f!”_°"‘ Reposi tory Engine)

! ®session()
: ‘Iaunch()
?‘selecTTod()

®save()
: iew()
. ®close()

- $map()

] ‘getToolLisT() _
QgetToolInformation()
. ®getInformation()
‘unlock()

Figure 8-17 - RepositoryAPI

8.6.3.1.2 Repository Error Return Codes

8.6.3.1.3 fetchSessionList

NAME

DESCRIPTION

Argument Description
ERROR RETURN VALUE

242

8.6.3.1.4 openSession

NAME

DESCRIPTION

Argument Description
ERROR RETURN VALUE

8.6.3.1.5 fetchSessionInformation

NAME

DESCRIPTION

Argument Description
ERROR RETURN VALUE

8.6.3.1.6 saveSession

NAME
DESCRIPTION
Argument Description

ERROR RETURN VALUE

8.6.3.1.7 closeSession

NAME

DESCRIPTION

Argument Description
ERROR RETURN VALUE

8.6.3.1.8 viewSession

NAME

DESCRIPTION
Argument Description
ERROR RETURN VALUE

8.6.3.1.9 createSession

NAME

DESCRIPTION

Argument Description
ERROR RETURN VALUE

8.6.3.1.10 fetchToolList

NAME

DESCRIPTION

Argument Description
ERROR RETURN VALUE

8.6.3.1.11 fetchToollnformation
NAME

DESCRIPTION
Argument Description
ERROR RETURN VALUE

8.6.3.2 Repository Engine

244

8.6.3.2.1 Class Diagram

D)

e
Reposi toryAPT
(from Repository Interface)

®closeSessi on()
®createSessi on()
®fetchsessionLi st()

/’\

Sessi onManager

8.6.3.2.2 Class Descriptions

N/

‘getSessi onlList()
®loseSessi on()
®sovesessi on()

i ew Session()

(from Repository Interface)

$1oCSM()
‘foTool()

Figure 8-18 - Repository Engine Layer

245

®fetchToolInformati on() 1 0.1 ‘openSessi on()
:OPG"S?—SSi on() :ge‘rTooILi st()
saveSession() ! WgetToolInformation()
$fetchSessi onInformation() . ®getSession()
$fetchToollist() : 7~
: i ew Session() 1 o1
1 N
I \
| N
{
| N
j 0.1 Session i
1
b
L - ‘Session()
= ®aunch() Jrot
F®selectTool() :
Database save() SessionList
(from Actors) B Siew() < >
| $close() 0..n 1| append()
‘query() 1 ‘"‘OP()
®update() $getToolList()
Sunlock() ®get Tool Informati on()
‘creme() ®setInformati on()
®lock() ®unlock()
1
!
|
I
i
W1
FiHer

8.6.3.2.2.1 SessionManager
8.6.3.2.2.2 Session
8.6.3.2.2.3 SessionList
8.6.3.2.2.4 Filter

8.6.3.3 Repository Database

8.6.4 Tool Component

8.6.4.1 Tool API

8.6.4.1.1 Class Diagram

ToolAPI

®launchTool) § e
N1
N

ETool

‘ ‘launchTooI()
$ETool()
$-ETool()

Figure 8-19 - ToolAPI

8.6.4.1.2 Tool Error Return Codes

8.6.4.1.3 launch
NAME

DESCRIPTION

246

—

ToolManager
| (from Tool Engine)

‘geTToolLi st()

| ®launchTool()

®getTool()

Argument Description
ERROR RETURN VALUE

8.6.4.2 Tool Engine

8.6.4.2.1 Class Diagram

7N
\J) ToolManager
ToolAPT N .
(from Tool Interface) > ‘gefTooILiS'f()
1 0.1 launchTool()
‘IaunchTool() __,‘__QEITOOIQM,W.J 1
o 1 / I‘:.‘k
N \
~ / 1 \,
N . \,
\ / N
\\.\ ’/" \\
\\\ ‘/ \\\
\\\ / \\\ o1
\! .
N\ // 3
N / ToolList
N\ . 0.1 / -
N e
N £ e
EYool = 7 - 1
vl
‘qunchTool() 0.n
$ETool() 1
‘~ETooI() S
ot S
N ~
| ~
3 ~.
O
4 | Reposi toryAPT
L Y ™ (from Repository Interface)
ToolControl ‘\‘
~ ®loseSession()
®ToolControl() \ createSessi on()
$iqunch() y $fetchSessionlisK)
®seiTool() IS "‘\‘ ‘ ®fetchTool Informati on()
T Iy W1 =7 ‘openSession()
~ — .
~ C) - saveSessn.on() _
=N L chSessi onInformati on()
AbstractEOTS ®fetchToolList()
i ew Sessi on()
‘Iaunch()
®AbstractEOTS()
¥ AbstractEOTS()

8.6.4.2.2 Class Descriptions
ToolManager

ETool

ToolList

ToolControl

AbstractEOTS

9 Deployment View

Note: This section was not completed due to a pre-mature conclusion of
the effort.

10 Size and Performance

Note: This section was not completed due to a pre-mature conclusion of
the effort.

11 Security

Access to behavior within IDEA is limited to users registered within the database. These are be divided into
two fundamental categories: IDEA Users, and IDEA Administrators.

IDEA Users include personnel with privileges to map, populate, and analyze systems. The three basic roles
performed by IDEA Users are Define Network System, Scan System for Vulnerabilities, and Analyze
Vulnerabilities. Administrators will use IDEA to create sessions, define security profiles, and configure tools
for sessions.

11.1 Database Security 2

Multi-user database systems, such as Oracle, include security features that control how a database is accessed
and used. For example, security mechanisms:

e prevent unauthorized database access

e prevent unauthorized access to schema objects

e control disk usage

e control system resource usage (such as CPU time)
¢ audit user actions

Associated with each database user role is a schema. A schema is a logical collection of database objects
(tables, views, sequences, synonyms, indexes, clusters, procedures, functions, packages, and database links).

Database security can be classified into two distinct categories: system security and data security.
System security includes the mechanisms that control the access and use of the database at the system level.
For example, system security includes: ‘
¢ valid username/password combinations
o the amount of disk space available to a user's schema objects
¢ the resource limits for a user
System security mechanisms check:
* whether a user is authorized to connect to the database
e whether database auditing is active
¢ which system operations a user can perform

Data security includes the mechanisms that control the access and use of the database at the schema object
level.

For example, data security includes:

» which users have access to a specific schema object and the specific types of actions allowed for each
user on the schema object (for example, user SCOTT can issue SELECT and INSERT statements but
not DELETE statements usmg the EMP table)

e the actions, if any, that are audited for each schema object

? Oracle 8, Release 8.0.4 Documentation Library - Oracle8 Concepts Release 8.0 A58227-01

251

11.2 Security Mechanisms

The Oracle server provides discretionary access control, which is a means of restricting access to information
based on privileges. The appropriate privilege must be assigned to a user in order for that user to access a
schema object. Appropriately privileged users can grant other users privileges at their discretion; for this
reason, this type of security is called "discretionary".

Oracle manages database security using several different facilities:
e database users and schemas
e privileges
e roles
e storage settings and quotas
e resource limits

e auditing

11.2.1 Database Users and Schemas

Each Oracle database has a list of usernames. To access a database, a user must use a database application and
attempt a connection with a valid username of the database. Each username has an associated password to
prevent unauthorized use. Each user has a security domain - a set of properties that determine such things as
the:

e actions (privileges and roles) available to the user
e tablespace quotas (available disk space) for the user

e system resource limits (for example, CPU processing time) for the user

11.2.2 Privileges
A privilege is a right to execute a particular type of SQL statement. Some examples of privileges include the
¢ right to connect to the database (create a session)
e right to create a table in your schema
¢ right to select rows from someone else's table
e right to execute someone else's stored procedure

The privileges of an Oracle database can be divided into two distinct categories: system privileges and schema
object privileges.

a. System Privileges

System privileges allow users to perform a particular system wide action or a particular action on a particular
type of schema object. For example, the privileges to create a tablespace or to delete the rows of any table in

the database are system privileges. Many system privileges are available only to administrators and application
developers because the privileges are very powerful.

b. Schema Object Privileges

Schema object privileges allow users to perform a particular action on a specific schema object. For example,
the privilege to delete rows of a specific table is an object privilege. Object privileges are granted (assigned) to
end-users so that they can use a database application to accomplish specific tasks.

252

Privileges are granted to users so that they can access and modify data in the database. A user can receive a
privilege two different ways:

1. Privileges can be granted to users explicitly. For example, the privilege to insert records into
the EMP table can be explicitly granted to the user SCOTT.

2. Privileges can be granted to roles (a named group of privileges), and then the role can be
granted to one or more users. For example, the privilege to insert records into the EMP table
can be granted to the role named CLERK, which in turn can be granted to the users SCOTT
and BRIAN.

Because roles allow for easier and better management of privileges, privileges are normally granted to roles
and not to specific users. The following section explains more about roles and their use.

11.2.3 Roles

Oracle provides for easy and controlled privilege management through roles. Roles are named groups of
related privileges that are granted to users or other roles. The following properties of roles allow for easier
privilege management:

Reduced granting of privileges - Rather than explicitly granting the same set of privileges to many
users, a database administrator can grant the privileges for a group of related users granted to a role.
And then the database administrator can grant the role to each member of the group.

Dynamic privilege management - When the privileges of a group must change, only the privileges of
the role need to be modified. The security domains of all users granted the group's role automatically
reflect the changes made to the role.

Selective availability of privileges - The roles granted to a user can be selectively enabled (available
for use) or disabled (not available for use). This allows specific control of a user's privileges in any
given situation.

Application awareness - A database application can be designed to enable and disable selective roles
automatically when a user attempts to use the application.

Database administrators often create roles for a database application. The DBA grants an application role all
privileges necessary to run the application. The DBA then grants the application role to other roles or users. An
application can have several different roles; each granted a different set of privileges that allow for more or
less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the privileges granted to the role.
Typically, an application is designed so that when it starts, it enables the proper role. As a result, an application
. user does not need to know the password for an application's role.

11.2.4 Storage Settings and Quotas

Oracle provides means for directing and limiting the use of disk space allocated to the database on a per user
basis, including default and temporary tablespaces and tablespace quotas.

a. Default Tablespace

Each user is associated with a default tablespace. When a user creates a table, index, or cluster and no
tablespace is specified to physically contain the schema object, the user's default tablespace is used if
the user has the privilege to create the schema object and a quota in the specified default tablespace.
The default tablespace feature provides Oracle with information to direct space usage in situations
where schema object's location is not specified.

b. Temporary Tablespace

Each user has a temporary tablespace. When a user executes a SQL statement that requires the
creation of temporary segments (such as the creation of an index), the user's temporary tablespace is
used. By directing all users' temporary segments to a separate tablespace, the temporary tablespace
feature can reduce 1/0 contention among temporary segments and other types of segments.

c. Tablespace Quotas

Oracle can limit the collective amount of disk space available to the objects in a schema. Quotas
(space limits) can be set for each tablespace available to a user. The tablespace quota security feature
permits selective control over the amount of disk space that can be consumed by the objects of
specific schemas.

11.2.5 Profiles and Resource Limits

Each user is assigned a profile that specifies limitations on several system resources available to the user,
including:

a. number of concurrent sessions the user can establish
b. CPU processing time
1. available to the user's session
2. available to a single call to Oracle made by a SQL statement
c. amount of logical I/O
1. available to the user's session
2. available to a single call to Oracle made by a SQL statement
d. amount of idle time for the user's session allowed
e. amount of connect time for the user's session allowed
f. password restrictions
1. account locking after multiple unsuccessful login attempts
2. password expiration and grace period
3. password reuse and complexity restrictions

Different profiles can be created and assigned individually to each user of the database. A default profile is
present for all users not explicitly assigned a profile.

The resource limit feature prevents excessive consumption of global database system resources.

11.2.6 Auditing

Oracle permits selective auditing (recorded monitoring) of user actions to aid in the investigation of suspicious
database use. Auditing can be performed at three different levels: statement auditing, privilege auditing, and
schema object auditing.

a. Statement Auditing

Statement auditing is the auditing of specific SQL statements without regard to specifically named
schema objects. In addition, database triggers allow a DBA to extend and customize Oracle's built-in
auditing features. Statement auditing can be broad and audit all users of the system or can be focused
to audit only selected users of the system. For example, statement auditing by user can audit
connections to and disconnections from the database by the users SCOTT and LORI.

b. Privilege Auditing

Privilege auditing is the auditing of the use of powerful system privileges without regard to
specifically named schema objects. Privilege auditing can be broad and audit all users or can be
focused to audit only selected users.

c. Schema Object Auditing

Schema object auditing is the auditing of accesses to specific schema objects without regard to user.
Object auditing monitors the statements permitted by object privileges, such as SELECT or DELETE
statements on a given table.

For all types of auditing, Oracle allows the selective auditing of successful statement executions, unsuccessfil
statement executions, or both. This allows monitoring of suspicious statements, regardless of whether the user
issuing a statement has the appropriate privileges to issue the statement.

The results of audited operations are recorded in a table referred to as the audit trail. Predefined views of the
audit trail are available so that you can easily retrieve audit records.

11.3 Authenticating Database Users with Windows NT*

11.3.1 Authentication Overview

The Oracle8 database can use information maintained by Windows NT to authenticate database users. The
benefits of Windows NT authentication include:

¢ Enabling users to connect to an Oracle8 database without supplying a user name or password

¢ Centralizing Oracle8 database user authorization information in Windows NT, which frees Oracle8
from storing or managing user passwords

e Allowing Oracle8 and Windows NT user names to be the same

The Windows NT Native Authentication Adapter (automatically installed with Net8 Server and Net8 Client)
enables database user authentication through Windows NT. This enables client computers to make secure
connections to an Oracle8 database. A secure connection is when a Windows NT client user name is retrieved
on a database server through the Windows NT Native Authentication Adapter. The database server then
permits the user name to perform the database actions on the server.

The Windows NT Native Authentication Adapter provides database users with the following privileges:
e Connecting Without a Password as a Nonprivileged Database User

e Connecting as SYSOPER and SYSDBA Without a Password

e Connecting as INTERNAL Without a Password

¢ Granting Database Roles through Windows NT

Attention:

Granting database roles through Windows NT is an advanced database administration task not appropriate
for all database environments. You cannot use both Windows NT and the Oracle8 database to grant roles
concurrently. Select a role granting process appropriate to your database environment.

Note:

For Windows NT authentication to work, the SQLNET.AUTHENTICATION_SERVICES parameter
must be set as follows in your ORACLE_HOME\NET80\ADMIN\SQLNET.ORA file on both client and
server:

? Oracle8 Enterprise Edition— Getting Started

[§%)
i
w

SQLNET.AUTHENTICATION SERVICES = (NTS)

This is the default setting after Net8 Server and Net8 Client installation.

11.3.2 Connecting Without a Password as a Nonprivileged Database User

This section describes how to authenticate nonprivileged database users (nondatabase administrators) using
Windows NT so that a password is not required when accessing the database. When you use Windows NT to
authenticate nonprivileged database users, your database relies solely on Windows NT to restrict access to
database user names.

The local and domain user name FRANK and the domain SALES are used in the steps below. Substitute the
appropriate local and domain user name and domain name for your environment.

To perform authentication tasks on an Oracle8 database server:

a. Add the OS_AUTHENT PREFIX parameter to your INITS/D.ORA file. The
OS_AUTHENT_PREFIX value is prefixed to local or domain user names attempting to
connect to the server with the user's operating system name and password. The prefixed user
name is compared with the Oracle user names in the database when a connection request is

attempted.
b. Set OS_ AUTHENT_PREFIX to “”:
c. Use User Manager to create a Windows NT domain user name for FRANK (if the appropriate

name does not currently exist). See your Windows NT documentation or your network
administrator if you do not know how to do this.

d. Follow the substeps below to create a new registry parameter for authenticating a domain
name FRANK on domain SALES.

1. Start the registry editor, REGEDIT32, from Start/Run:

Go to the registry subkey of the Oracle home directory that you are using.
Choose the Add Value option in the Edit menu.

Enter OSAUTH_PREFIX DOMAIN in the Value Name field.

Choose REG_EXPAND _SZ from the Data Type drop-down list box.
Click OK.

b

The String Editor dialog box appears:

6. Enter TRUE in the String field to enable authentication at the domain level. TRUE
enables the server to differentiate between multiple FRANK user names, whether
they be local user FRANK, domain user FRANK on SALES, or domain user
FRANK on another domain in your network. Entering FALSE causes the domain to
be ignored and local user FRANK to become the default value of the operating
system user returned to the server.

7. Click OK.
The Registry Editor adds the parameter.
8. Choose Exit from the registry menu.

e. * Ensure that SQLNET. AUTHENTICATION_SERVICES is set as follows in your
ORACLE_HOMEWET80\ADMIN\SQLNET.ORA file:

256

SQLNET.AUTHENTICATION_SERVICES = (NTS)

Start Server Manager:

SVRMGR30

Connect to the database with the SYSTEM database administrator (DBA) name:
SVRMGR> CONNECT SYSTEM/PASSWORD

Create an operating system-authenticated user by entering the following:
SVRMGR> CREATE USER "SALES\FRANK" IDENTIFIED EXTERNALLY;
The double quotes are required and the entire syntax must be in uppercase.

Grant the Windows NT domain user FRANK appropriate database roles from the possible
chooses below:

SVRMGR> GRANT PLANNER TO "SALES\FRANK";
Connect to the database with the INTERNAL DBA name:
SVRMGR> CONNECT INTERNAL/PASSWORD

Shut down the database:

SVRMGR> SHUTDOWN

Restart the database:

SVRMGR> STARTUP

To check enter:

SVRMGR> SELECT * FROM USER_ROLE_PRIVS;

This causes the change to the OS_AUTHENT_PREFIX parameter value to take effect.

11.3.3 Granting Database Roles through Windows NT

This section describes how to grant Oracle8 database roles to users directly through Windows NT. When you
use Windows NT to authenticate users, Windows NT local groups can grant these users database roles.
Through User Manager, you can create, grant, or revoke database roles to users.

Note:

All privileges for these roles are active when the user connects. When using operating system roles,
all roles are granted and managed through the operating system. You cannot use both operating
system roles and Oracle roles at the same time.

To perform authentication tasks on the Oracle8 database server:

.a.

b.

Add the OS_ROLES initialization parameter to the INITS/D.ORA file.
Set OS_ROLES to TRUE. v
The default setting for this parameter is FALSE.

Ensure that SQLNET.AUTHENTICATION_SERVICES is set as follows in your
ORACLE_HOME\NET8O\ADMIN\SQLNET.ORA file:

SQLNET.AUTHENTICATION_SERVICES = (NTS)

Create a new database role:

257

SVRMGR> CREATE ROLE DBSALES3 IDENTIFIED EXTERNALLY; where
DBSALESS3 is the name of the role for these steps. Substitute a role name appropriate to
your database environment.

Grant Oracle roles to DBSALES3 that are appropriate to your database environment:

SVRMGR> GRANT DBA TO DBSALES3 WITH ADMIN OPTION;
SVRMGR> GRANT RESOURCE TO DBSALES3 WITH ADMIN OPTION,;

SVRMGR> GRANT CONNECT TO DBSALES3 WITH ADMIN OPTION;

Connect to the database with the INTERNAL DBA name:

SVRMGR> CONNECT INTERNAL/PASSWORD

Shut down the database:

SVRMGR> SHUTDOWN

Restart the database:

SVRMGR> STARTUP

Open the Windows NT User Manager.
Choose New Local Group from the User menu.
The New Local Group dialog box appears:

Enter the Windows NT local group name corresponding to the database role in the Group
Name field with the following syntax:

ORA_SID ROLENAME [D][_A]

For this example, ORA_ORCL_DBSALES3_D is entered.

Click Add.

The Add Users and Groups dialog box appears:

Select the appropriate Windows NT local or domain user name and click Add.
Click OK.

Your selection is added to the Members field of the New Local Group dialog box:

You can convert additional database roles to several possible Windows NT groups, as shown
in the following table. Then, users connecting to the ORCL instance in this example and
authenticated by Windows NT as members of these Windows NT local groups have the
privileges associated with DBSALES3 and DBSALES4 by default (because of the _D
option). DBSALES1 and DBSALES? are available for use by the user if they first connect as
members of DBSALES3 or DBSALES4 and use the SET ROLE command. If a user tries to
connect with DBSALES] or DBSALES2_A without first connecting with a default role,
they are unable to connect. Additionally, users can grant DBSALES2 and DBSALES4 to
other roles.

Database Roles | Windows NT Groupsu
"DBSALESI ~ ORA_ORCL_DBSALESI _
"DBSALES2 | ORA_ORCL DBSALES2 A
"DBSALES3 ~ ORA_ORCL_DBSALES3 D _

DBSALESA | ORA ORCL DBSALES4 DA

Note:

When the Oracle8 database converts the group name to a role name, it changes the name to
uppercase.

o. Click OK.
p- Exit User Manager.

(V]
wh
=]

12 Appendix A

12.1 CSM minimum information
Define the minimum set of information needed to be put into the CSM to launch each tool
1) Detail where the information can come from. Will it come from a user or some other tool?

2) Define the optimal (most minimum) path for executing the tools. Take into account all configured tools -
this means we need a list of configured tools available/accessible. Perhaps take into account all known
tools - this would be useful to let the user know that if they purchase this other tool, it would make their
life easier.

12.2 Taxonomies

Table - Layer Taxonomy
Table - Node Taxonomy

Table - Attribute Taxonomy

13 Appendix B

13.1 Table of CSM Layers
This table shows:

o the contents of each layer in terms of nodes,
e the attributes available for each node itemized by layer, and

e enumerates possible relationships to other layers.

261

14 Appendix C

14.1 Table of IA Tool API Capabilities

This table shows:

the tool platform,

the protocol required to launch the tool,

the communication backplar{e used to launch the tool,
data format translation from CSM for the tool,

the location of the tool results,

the format translation from the Tool results to CSM,
what tool results are valid for the CSM,

what too! results are not applicable to the CSM, and

defines what to do with the non-CSM tool results.

Table 14-1 - Tool configuration

Tool Name

Tool Supporters

What other tools does this tool require data from

Tool Clients

What other tools require this tool's information

Tool Map

Mapping of the CSM schema to the tool's required
data

Tool Results

Map of the tool's results to the CSM schema

15 Glossary

Common System Model (CSM) - The Common System Model is a schema for defining and storing network
and other system related information.

Map - The use of discovery tools or network design tools is termed Mapping.
Populate - The use of scanning tools is called Populating. A Map is Populated through the use of scan tools.

Analyze - The use of analysis tools (with the exception of Fuzzy Fusion) is called Analyze. A Populated Map
is Analyzed for vulnerabilities.

Fuse - The use of the Fuzzy Fusion tool is termed Fusing. Vulnerabilities and other system qualities found
during the Analysis of a Populated Map are Fused.

Model - A model is a snapshot of the system network, hardware, and software. Model information is used by
external tools during their system evaluation. The model information is stored as part of a session.

Session - A session is an entry in the repository for the collection of network information, tool results, and
security profile information.

Investigation - The term investigation is used to denote the act of mapping, populating, analyzing, and fusing
a network.

[\
(=)
(93

Appendix E

Meta-Language

264

Information Fusion Meta-Language Requirements

Name Ronda R. Henning Margaret Knepper Kevin L. Fox
Address Harris Corporation Harris Corporation Harris Corporation
Government Government Government
Communications Communications Communications
Systems Division Systems Division Systems Division
P.O. Box 37 P.O. Box 37 P.O. Box 37
Mail Stop W2/9703 Mail Stop 2/9450 Mail Stop 2/9450
Palm Bay, FL 32905 Palm Bay, FL 32905 Palm Bay, FL 32905
Phone Number | 321-984-6009 321-727-5268 321-729-7119
E-Mail rhenning@harris.com mknepper@harris.com kfox@harris.com
Introduction

Most security language related work has focused on mathematically correct security policy expressions that
can be formally verified with theorem proving techniques [1] [2). Our work on the IDEA program [3]
focused on the definition of an information assurance superstructure that could facilitate data sharing
among information assurance tools. In the course of our work on IDEA, it became evident that a security
translation function mapping the end-user's interpretation of security domain terminology to the more
precise terminology of the security engineer was required. During the design process it became increasingly
apparent that the specificity and precision needed to translate user security statements into effective,
reasonably secure implementations was lacking. A mechanism to facilitate requirement solicitation and
translation between the end user and security development domains was also required. To accomplish these
goals, the use of a meta-language was proposed to develop the correspondence functions. This paper
describes our efforts in designing the meta-language structure, and our progress to date on its
implementation.

Meta-Languages

A meta-language is a language used to describe other languages [3]. Meta-Languages are applicable to and
used in several different areas of computer science:

¢ Meta-Language for IP — A meta-language for the transformational programming environment [4].
WebSite META Language - A sequential filtering scheme where each language provides one of nine
processing passes [5].

¢ Financial Metal-Language - Provides a dialect specific to the financial industry for the description of
both data and processing [6]. '

Within the context of information assurance and information operations, a meta-language allows designers
and analysts to express the following inherent properties of a system:

the relationships between system elements,

the causalities, or which elements are relationships are the cause of system actions,

the vulnerabilities, or the potential opportunities for system security exploitation

the threats, or the actual opportunities a system user may have to exploit the system's vulnerabilities,
and

o the objectives, or mission to be accomplished by a given system.

A security analyst expresses a security policy using a semantically correct syntax that can be readily traced
through the design process to an implementation among several security mechanisms. An end-user
expresses security in terms of data sharing or access rights within his frame of reference. Our objective was

to define an information assurance translation mechanism that could capture the end user's assurance
requirements and facilitate their implementation in and traceability to a security design for a given end
user's application domain.

Knowledge Engineering

To constrain the scope of the meta-language development activity, it was necessary to define which aspects
of security engineering the meta-language would be able to address most effectively. The Security
Engineer rarely builds the same system architecture twice, but usually has the same objectives to embody in
each system's design: enforcement of the customer's security policy and the maintenance of the system in a
known, secure state. The Security Engineering (SE) discipline applies a variety of information sources and
tools to analyze the diverse aspects of system security problems. For example, the physical, electronic, and
personnel security requirements of the customer must all be addressed within a system design. The cost
and performance impact associated with a given solution set may vary greatly, depending upon which
countermeasures are applied.

We must understand the types of information and tools used by the security engineer in order to define a
meta-language for the security-engineering domain. To develop this domain understanding, knowledge
engineering activities were conducted with experienced system security architects. The objective of our
knowledge engineering task was to determine what kinds of information the security engineer needs and
how that information is applied in the systems development process.

A system architecture scenario was generated and used in a series of knowledge engineering interviews
with multiple system security engineers. Given a relatively "normal” network configuration, the security
engineer was asked to evaluate the configuration with the question: “What are the vulnerabilities that allow
a person to break into this system?” From this single question we began to characterize the security
thought processes and categorize aspects of the security domain. It soon became apparent that the scenario
needed to be constrained, or the many aspects of security involved would present an overwhelming number
of alternative solutions. For example, physical security, personnel security, network security, and
information security all represent valid security aspects of a given system design. For the purposes of the
knowledge engineering scenario, we concentrated on information security considerations.

During the knowledge engineering scenario, it became apparent that the security engineer applies an
analytical problem solving process to define potential security problems and possible solutions. This
process can be characterized in the following steps:
e Understanding the problem, or the system scenario
e Defining the goal of security in the context of the scenario

e What information is to be protected?

e Why does this information require protection?

e What is it being protected against?

e How is the information being used?

Describing the physical environment in which the system resides.

Describing the personnel security practices in place.

Describing any network interfaces or connectivity requirements.

e Decomposition of the problem. Based on the understanding gained in step one, the security engineer
decomposes the problem into a series of sub-problems. These sub-problems are similar to the steps
described in the Anatomy of a Hack [6], which describes the thought process of a system intruder. The
sub-problems can be decomposed into the following categories:

e Access To — How can someone access the system?

e Access Into — How can someone get access into the system?

e Access Whatthow — Once they have access into the system, what can they access and how will
they access it?

o Hide Access — How will they hide their access into the system?

* Resolution of the decomposed problem. Often solving the decomposed sub-problems proved easier
than solving the overall scenario. The security engineer addressed each issue exposed in the problem
decomposition and, upon solving each individually, solved the security issues for the system as a
whole.

Security Meta-Language

Based on the knowledge acquisition process mentioned above, we began to define the information
characteristics required for a security specific meta-language. In addition to the meta-language syntax, a set
of language interactions must be specified in the meta-language. The meta-language requires three
principle components: '

1. Definitions — A syntax to describe the security structures and the environment.

2. Procedures — The ability to combine definition objects that can interact with automated tools to
facilitate problem analysis.

3. Tool Interaction — The ability to interact among various security tools, providing input to the tools and
using the output results to improve the security solution.

To illustrate the structure of the meta-language we present an example using the steps developed in the
Knowledge Engineering scenario — “What are the vulnerabilities that allow a person to break into our
computer system?”

Definitions

The first step of the process is to define the information required for the analysis. The meta-language
structure allows the security engineer to describe the security structures and the environment. The
definitions need to be decomposed to the smallest possible components, which can then be recombined to
build higher level definitions. Basic operators (AND, OR, NOT etc.) will allow the operator to perform the
building of the definitions. The syntax should be defined in terms that the user community understands. A
security expert might say ‘discretionary access control;’ another user could define it as ‘read access to the
accounting files and nothing else’. Each of these language syntax definitions describes the same concept,
but they are able to define it with terminology that is comprehensible to them. The next level of language
definition would be to map similar terms between the end user domain and the security-engineering
domain.

One of the first things the security engineer defines is the system environment. Instead of repeatedly
describing all the information about the environment, it was easier to develop standard descriptions of
different environments and allow the user to select the best standard description. Table 1 presents the
standard set of environmental descriptions we applied during the knowledge engineering scenarios. The
terms firewall, encryption, and EMSEC will need their own definitions to be useful in the meta-language in
the long term.

Table 1. Descriptions of the environment
Environment Open Restricted Protected Restricted Isolated Self Contained
Type Connections Domain
Condition Unprotected external . | Control ¢to physical | Control to physical | No external connections
Description connections environment environment AND Personnel checked
AND Physical access to AND f[firewall OR | AND [DMZ OR server | before access to system
system encryption to outside] physically separated] AND No emmination
AND Limited EMSEC AND Limited EMSEC

Based on the environment type selected, acceptable descriptions of Identification and Authentication (1&A)
information can be linked with a given selection. Definitions for Identification and Authentication are
presented in Table 2. The next level of abstraction would be to link the environment and the security policy
of the system to define the appropriate type of Identification and Authentication required.

Table 2. Example of Language Syntax for Identification and Authentication

Definition Description Type Definition
Identification & | ¢ Who’s allowed to login
Authentication e How does the system

decide who is legitimate

e How does the system
keep track of who’s
doing what in the
system

Basic Protected mechanism for authentication
AND Unique user identification

AND All auditable events

AND I&A protected

Enhanced | Basic I[&A

AND [additional authentication mechanisms
OR independent authentication mechanisms
OR user access profile

OR authentication administration}]

The user also needs to define information about the different vulnerabilities associated with the problem.
For example, in this scenario, a vulnerability would be external connectivity. Table 3 illustrates the basic
definition capability used in the meta-language to define the components of ‘External Connectivity’. The
components of the ‘External Connections TO’ category are Internet, dialup, wireless, and network
connections. The user can also assign a security level, or priority, in conjunction with the definition. This
priority can be treated as a ranking order of potential concerns. In addition to connecting to the network,
another vulnerability may be listening to the network, or eavesdropping with a network sniffer device. The
definitions for ‘External Connection LISTEN’ need to be expanded in a manner similar to the ‘External
Connect TO’ definitions.

Table 3. Example of Language Syntax for External Connections
Definition Description Type Security Level Protection Protection
Exploitation
External External
Connection connections to the
TO system
Internet I
None Easy -
Encryption <2 Easy +
Encryption > 2 Mod -
Firewall Mod
Dialup
Wireless 3
Network 4
External External
Connections connections that can
LISTEN let the user listen to
the system
Cell/FM

For example, the Internet connection is the user's highest level of concern. As we walked through the
refinement process we realized that not only are there different priorities associated with different threats,
there are also different levels or priorities associated with various countermeasures. There are different
levels of protection that can be offered, so that information should also be included in the definition. This
information can also be used to provide assistance to another user by describing how to protect the system.
Finally, the degree of difficulty in penetrating the system must be represented (i.e. how difficult it would be
to break into the system). We define this as the possibility of Protection Exploitation, and the value is based
upon the protection mechanism employed. The protection exploitation shown in Table 3 is a measure of the
difficulty to break into a given system.

268

Table 4 shows the definition of the protection exploitation, based on the cost, time, and accountability
factors associated with penetrating a system. Additionally the “+’ and ‘- measures were used to further
express the relative measurement, with the ‘+ indicating a higher degree of difficulty. Once we developed
this measure it was easy to rate different vulnerabilities. Table 5 shows an example of rating the wireless
protections to breaking into the system.

Table 4. Measure of Difficulty of breaking into a system

Rating Easy Moderate Hard

Cost < $1000 < $10,000 > $ 10,000

Time 1 hour < week > week

Accountability None Detection Detected and recorded

Definition Little or no effort to break into | Some effort to break into the | A lot of effort to break into the
the system system system.

Table 5. Example of Protection Exploitation for Wireless
External Connections

Cell/FM_| Microwave | Light AM/FM | Burst
None M- M M+ M- M+
Encryption <2 M+ H- H- M+ H
Encryption >2 H H H H- H+

As the process continues, the user continues to develop and refine the required definitions. While walking
through our scenario we developed definitions for the different parts of the problem. These definitions
included:

Access to the system — The two primary methods of breaking into the system were identified as
physical access and the external connectivity to the system. The main emphasis was identifying the
vulnerabilities that would permit someone into the system.

Access into the system — We focused on the basic rules of the Identification and Authentication
(presented Table 3).

Access What — Data files and system files were the primary items to attack in our environment
examples. Files can be read, written, deleted, and executed, depending upon the user's access
privileges.

Access How —Data can be accessed through root access, root privilege, change privilege, execute
commands, spoofing, system configuration, buffer overflow, or access to files. The main protection
against data access was Discretionary Access Control (DAC).

Hiding access — We started the identification process by asking the basic questions: What is recorded?
How is it recorded? Where is it stored? We identified the system and its auditing subsystem as the two
primary places a user would attack. System data files can be modified or executed. The Auditing file
has a number of methods that can be used in an attack, listed in Table 6.

Table 6. Auditing File Protection Methods
Vulnerability Protection

Tum it off System Administration
Access Control

Delete it Access Control

Overwrite it System Configuration

Reset it Permission

Drop Bit Bucket Permission

User Enters

Information Execute
Through GUI Procedures Run Tools Review Results
Build Model
. DISCOVE Network
Definitions
Map Tools Port i Record
o Procedures FIND »{ Scanning ; » Information
Definitions CHECK 2
L P :
Build
Procedures Vulnerability
Scanner

Figure 1 Flow Through the meta-language process

Integration with Security Tools

The definitions are mapped to each security tool’s inputs and outputs. The meta-language accommodates
special directives for direct interaction with the security tools. The user builds a procedure that combines a
set of directives to be executed, assisting the security engineer in problem analysis. In this scenario the user
may want to perform the following steps to help them analyze the problem:

SET environment = Restricted Protected Connections.
DISCOVER the network.

FIND external connections.

CHECK the Identification and Authentication.

These steps refer to specific actions defined in the context of specific tools, or the specification of particular
environmental constraints. Once the procedures are in place, then the meta-language can be executed, as
shown in Figure 1. After the procedure has executed, the SE is able to review the results.

Language Issues

As we built the meta-language syntax, the need for a reasoning capability became apparent. In the case of
the Identification and Authentication definition, suppose one of the pieces of the definition is not being
implemented. How should the protection level be rated when piece(s) of the definition are missing? Does
the user have to examine each possible scenario for missing information and rate it? This would be a very
unpleasant and time-consuming process for the user. The security engineer is able to analyze the problem
and determine that the loss of one element of Identification and Authentication may not be too severe due
to environmental considerations and other protections in the system. We do not believe this thought process
should be considered a part of the meta-language. Our current thought is that this process requires another
tool to perform this reasoning process. The meta-language will funnel information into the reasoning
capability tool and provide analyzed results.

Progress to Date

The language syntax definitions need to be tested with other system architecture scenarios to validate and
expand the language's vocabulary. The language syntax needs to be sufficiently extensive to describe the

270

various layers of information detail that will be required for a complete system description, and also needs
to have enough flexibility to evolve as system architectures and countermeasures evolve over time.

Most of our work on IDEA work has focused on the security architecture for the system and its derivation.
Our work on the Reasoning Capability Tool component has been under development in our information
assurance internal research and development project.

Conclusion

Development of a meta-language benefits both laymen and security engineers by allowing both to develop
security policies in their own terms. The meta-language provides a translation mechanism between the end
user's interpretation of security policy and the security practitioner's requirements for semantically sound
security policy expressions. These policies, defined within the structures of the meta-language, can be

stored in a repository for use by multiple external tools to determine compliance with the specified system
security policy.

Acknowledgements

This research was conducted in part under a contract with the Defensive Information Warfare Branch of the
U.S. Air Force Research Laboratory at Rome, NY (contract #F30602-00C-0057). Additional research has
been conducted under Harris Corporation’s Internal Research & Development program.

References

m Jacob, Jeremy, "Security Specifications," Proceedings of the 1988 IEEE Symposium on_Security
and Privacy, Oakland, CA, 18-21 April 1988.

[2] Dobson, John E., and McDermid, John A., "A Framework for Expressing Models of Security Policy,"
Proceedings of the 1989 IEEE Computer Society Symposium on_Security and Privacy, Oakland,
CA, 1-3 May 1989

[3] Tallet, Joseph, Ronda Henning andKevin Fox, “IDEA: An Information Superstructure”, to appear in
the Proceedings of the 2™ DARPA Information Survivability Conference and Exposition (DISCEX
1I), Anaheim, CA, 12-14 June 2001.

[4] http://webopedia.internet.com/Computer_Science/meta.html|

[5]1 http://web.comlab.ox.ac.uk/oucl/research/grants/b8.html

[6] http://sorry.vse.cz/~tom/Linux-Announces/33.html

[71 http://www.the-xml.com/

[8] Scambary, Joel, Stuart McClure, George Klutz, Hacking Exposed: Network Security Secrets &
Solutions, McGraw-Hill, New York, 2001.

271

Appendix F

IDEA — An Information Superstructure

272

IDEA — An Information Superstructure

Joseph O. Tallet Ronda R. Henning Kevin L. Fox
jtallet@harris.com rhenning@harris.com Member IEEE
kfox@harris.com
Abstract unique enterprise policy elements. From the user

This past October, the Associated Press reported that for
over a month, hackers effectively penetrated Microsoft’s
firewall and, potentially, had access to source code for
future products. Over the past year, reported commercial
espionage has been increasing steadily. These events
underscore the necessity for security engineers to define
and implement strong information assurance
infrastructures. The concept of defense in depth is used
to provide sufficient detection and defensive
countermeasures to ensure an enterprise’s information is
protected. Over the past three years, Harris has
conducted research leading to the development of an
assurance superstructure tool: the Integrated Design
Environment for Assurance (IDEA). Building upon
concepts developed during the Network Vulnerability
Tool (NVT) program, the IDEA program refined the
design and provides a comprehensive assurance analysis
superstructure. The IDEA program benefited from the
NVT architecture to gain greater adaptive capabilities to
address the evolving capabilities of external vulnerability
assessment and risk management tools. This re-
architected solution builds upon lessons learned during
the NVT project.

Index terms — architecture, patterns, FuzzyFusion™,
data fusion, fuzzy, information operations, information
security.

1 INTRODUCTION / PURPOSE

For the last five years, Harris Corporation has been
conducting research on a security engineering
toolkit. The objective of our research was not to
build yet another vulnerability scanner or risk
assessment tool, but to provide reuse and a common
operational picture among multiple tools. Our long-
term vision is a toolkit that can be used by Security
Engineers in the vulnerability and risk assessment of
networked computer systems (Figure 1).

An important aspect of the development of a
common operational picture is to make the results
useful in the user’s context. To that end, we
determined that an assessment superstructure should
accommodate the tool user’s security policy, not
simply the individual tools’ interpretations of policy.
This allows the user to tailor his analysis to reflect

perspective, the toolkit assists the Security Engineer
in the assessment of a system relative to its security
posture. This enables the engineer to answer the
question, “Is there something about the system
components that causes the policy to fail?”

Important capabilities and opportunities researched
during the IDEA project collectively support
security engineers. FuzzyFusion™ provides analysis
of separate data sources combining analysis tools’
results into a single vulnerability indicator. Meta-
language for security policy definition promises
singular policy support for both seasoned security
engineers and small business seeking to define or
improve security policy. The Common System
Model (CSM) provides a generic standard for
representing system networks. This standard allows
individual vulnerability assessment tools to openly
share data.

Portable
Security Engineering
Toolkit

ey
Identified
Viulnerability

ROV
Twwes

Figure 1. The portable Security Engineering toolkit
would facilitate the vulnerability and risk assessment
of an existing network.

IDEA incorporates all of these features as well as
vulnerability metrics and measurement into an open
architecture highly suitable for all aspects of security
engineering and vulnerability assessment.

273

2 THE CONCEPT

From a conceptual perspective, the Security
Engineer might have a variety of tools available -
commercial off-the-shelf (COTS), government off-
the-shelf (GOTS), shareware, etc. The engineer’s
tools might include the following.

e Network scanners - for network discovery of
the supporting devices

e Vulnerability scanners — to find vulnerabilities
in the OS, applications, etc.

¢ Risk analysis tools — addressing areas such as
physical security, risk of data disclosure,
valuation of data assets, etc.

e Threat analysis tools — examining courses of
action an attack may take (e.g. shortest path).

For the security engineer to produce an accurate,
system-level assessment of risk, multiple types of
Information Assurance (IA) tools and techniques
must be employed (Figure 1). The security engineer
must become proficient in the use of each of these
and the interpretation of their results. Among the
categories of tools available to the security engineer
are the following.

e Tools that work from documented vulnerability
databases and possibly repair known
vulnerabilities. Examples include ISS’ Internet
Scanner, Network Associates, Inc.’s CyberCop,
and Harris’ STAT".

e Tools that use various parameters to calculate a
risk indicator. An example is the Los Alamos
Vulnerability Assessment (LAVA) tool.

e Tools that examine a particular aspect of the
system, such as the operating system or database
management system, but ignore the other
system components. SATAN, for example,
analyzes operating system vulnerabilities but
ignores infrastructure components such as
routers.

STAT ™ (System Test and Analysis Tool) is a trademark of
Harris Corporation, Melbourne, Florida.

The use of multiple tools, from a variety of vendors,
is a labor-intensive task. Typically, it means that the
security engineer will have to enter a description or
representation of a system (network) multiple times,
in multiple formats. The security engineer then must
manually analyze, consolidate and merge the
resulting outputs from these multiple tools into a
single report of a network’s security posture.
Afterwards, the security engineer can complete the
risk analysis (calculating expected annual loss,
surveying controls, etc.), and then repeat the whole
process to analyze alternatives among security risk,
system performance, mission functionality and the
development budget.

No one particular risk assessment tool provides the
complete coverage necessary for security engineers
to ascertain a given system’s vulnerabilities. It is a
fact that complete vulnerability assessment requires
system analysis using multiple vendors. Security
engineers have an unfairly difficult task in assessing,
defining, and implementing security profiles across

IDEA

[FuzzyFusion

MetaLanguage

|__Common System Model
[Metrics {

Tool Plugins

Externa!l Tools .
Scan Tool |fDiscovery Tool l I Analysis Tool |

Figure 2. IDEA Capabilities

their networks. The ease of downloading and
launching vulnerability assessment tools surpasses
the effort necessary to correctly configure a
corporation’s firewall. The various design tools
available to the security engineer do not,
individually, provide complete views and
assessments of a network.

IDEA bridges this information and analysis gap
between individual tools. The IDEA solution is to
provide:

274

e A single interface for vulnerability assessment,
providing a single interface to a variety of
COTS vulnerability assessment tools;

e A data exchange mechanism, the Common
System Model (CSM); and

e Tool plug-in capabilities wrapped in an
Application Program Interface (API).

3 FuzzyFUSION™

In FY00, we addressed the problem of how to
consolidate and merge the results from multiple
Information Assurance assessment and analysis
applications, while preserving the intent of each
tool’s analysis. During previous research, two
technologies appeared most promising — Data Fusion
and Fuzzy Logic. Data Fusion appeared to provide a
conceptual framework for addressing the problem of
merging results from multiple vulnerability
assessment and risk analysis tools. Fuzzy Logic,
particularly Fuzzy Expert Systems, appeared to
provide a viable mechanism to implement the fusion
concepts in the Information Assurance (or, its
counterpart, Information Operations) domain. Fuzzy
Expert Systems can use and assimilate knowledge
from multiple sources.

As part of our research effort, we investigated
technologies that would support our goal of
consolidating and merging the results from multiple
analysis applications. We examined a variety of
current assessment products, including the inputs
and outputs those products require. From these,
Harris Corporation has developed the concept of
FuzzyFusion™ for Information Assurance Risk
Analysis to consolidate and merge the results from
multiple vulnerability assessment and risk analysis
tools.

Intelligence Data Fusion is a multi-level, multi-
disciplinary-based information process to yield the
integration of information from multiple intelligence
sources (and perhaps multiple intelligence
disciplines) to produce the most specific and
comprehensive unified data about an entity (its
situation, capabilities, the threat it imposes) [3]. The
purpose of Data Fusion is to provide the best
possible tailored intelligence information to
consumers based on the available inputs. Data
Fusion technology has been applied, for example,
aboard Airborne Warning And Control System

(AWACS) to the problem of tracking enemy
military aircraft and assessing the situation and any
threat.

FuzzyFusion™ combines Data Fusion and Fuzzy
Logic in a unique way for the purpose of generating
a simple vulnerability assessment. Information about
the vulnerabilities of each system in a network are
collected and assessed. The result of this assessment
is a single fuzzy value for each of the nodes within
the network. This fuzzy value relates to the node’s
assessed risk or vulnerability level. The validity of
this assessment method is still under research.

Our objective is to apply FuzzyFusion™ to combine
multiple types of data, from multiple sources, with
other contextual information to form an integrated
view of a networked system’s assurance posture. In
particular, our objective is to provide IDEA users
with a simple expression of the vulnerability posture
of a given system or system design. This allows the
user to perform “what if” analysis for functionality,
performance, and countermeasure trades, for the
purpose of refining and improving the existing
system or system design.

4 META-LANGUAGE

DARPA envisioned the development of a meta-
language and toolkit in which designers and analysts
would express the relationships, causality,
vulnerabilities, threats, and objectives inherent in a
system using this common meta-language. A meta-
language supported by assurance tools will allow
system engineers and laymen to describe security
profiles useable by various assurance analysis tools.

We developed the meta-language by investigating
how system engineers analyze a system. System
engineers define the goal of the system, designs the
system, its users, environment, and requirements and
more. The meta-language supports all the steps a
system engineer utilizes for system definition and
analysis. To achieve this goal, the meta-language
allows the . identification of atomic assurance
qualitics each of which are mapped into more
general qualities. System certification and
accreditation engineers identify basic elements and
actions defining “good assurance practices” and
store them into a security policy defined within the
constructs of the meta-language.

The security policy is stored in the IDEA repository
where it is readily translated for external
vulperability assessment tools as well as for
FuzzyFusion™ analysis. FuzzyFusion™ applies the
policy when performing analysis to synthesize the
results generated from the vulnerability assessment
of external assessment tools.

The meta-language grammar allows definition of
many security features, enabling definition of
complete security policies.

e System accessibility — internal-only, external-
only, external and internal,

e System protections — password, biometrics,
passkey,

e System features — firewall, encryption,
Discretionary Access Control, Mandatory
Access Control, audit control, etc.,

e System contents — non-classified, classified,
etc.,

e System locale — internet, local network, isolated,

The meta-language benefits both laymen and
security engineers by allowing both to develop
security policies in their own terms. A layman’s
front-end tool to the meta-language translates high-
level terms into meta-language structures. A security
engineer, capable of understanding security-jargon
grammar has security-domain terms translated into
meta-language constructs. This capability is a
packaging approach for the meta-language. The
meta-language is capable of supporting both high-
level and explicit policy definitions through a
supporting user interface. These policies, defined
within the structures of the meta-language are stored
within a database for use by IDEA, FuzzyFusion™,
and external tools.

5 COMMON SYSTEM MODEL

The CSM is a data framework useful for
representing external tool information within a
common data format. It is a generic data framework
for specifying networks, network components
(computer and peripheral devices), and component
features (operating system versions and patches,
protocol capabilities). The CSM bridges the data

requirements of external tools allowing them to
share common information.

System network information stored in the CSM is
available to external tools as IDEA filters and
formats it prior to launching external tools. IDEA
actively collects, formats, and stores tool-generated
data for later use.

The CSM structure is very generic (Figure 3).
Layers representing system qualities may indicate
network arrangements, wide area networks, local
networks, etc. and contain nodes representing
generic network items. A node may be a router,
computer, switch, firewall, etc. and is identified by a
unique name (i.e. URLs). Each node consists of
attributes containing information collected by

Node

Node
Layer
Node

S~ o<
E I
— o< ®
“ o< ® -

Figure 3. CSM Structure

system scan tools and utilized by system analysis
tools for vulnerability assessment.

System engineers benefit from the CSM by
providing system network information only once.
IDEA handles the transfer of redundant network data
among external tools.

5.1 Metrics

There has been an ongoing debate within the
assurance community as to whether assurance
characteristics are truly measurable. This discussion
on information assurance metrics agrees that it is
very difficult to define quantifiable assurance
metrics, but that it may be possible to define
assurance indicators, or tendencies, that would be
less stringently defined. For example, the relative
“goodness” of a system could be measured as
opposed to an “assurance grade”.

Given this lack of standard measures, providing
some sort of assurance indicators required extensive

276

analysis. Over the course of IDEA, we defined and
refined a set of ranking criteria. We eventually
narrowed the assurance indicators to a standard set
of base measures, or fundamental elements. These
eight base measures and their meta-language
expressions are:

1. Physical Access to system (Defeat Physical
Security)

2. External Network Access (Defeat Firewall)

3. Access to 2 machine (Defeat I+A (Identification
and Authentication))

4. Access to Segment (Defeat Network I+A
(Identification and Authentication))

5. Access to Network (Defeat Routing)

6. Access to Sensitive Data (Defeat Access
Control)

7. Access to Critical Applications (Defeat Access
Control)

8. Access to Logs (Defeat Auditing)

All of these measures are related to access to the
system. Over the course of our study we concluded
that most assurance measurements were, in reality,
probability calculations. That is, the assurance
measurements were the probability that a given user
could gain access to some system element whose
access should have been denied by the defined
system security policy.

6 METHOD

Using these fundamental concepts, one can envision
an analogous Data Fusion process applied to the
Information Assurance domain. In this model, the
primary sensors are the various vulnerability
assessment and risk analysis tools, complemented by
various information solicited from the analyst
through the graphical user interface. The resulting
outputs from these tools are both qualitative and
quantitative data, in a variety of formats generated
by the various tool vendors. In the information
assurance domain, the objects of interest are the
nodes in a network or computing system — i.e. the
assets, including hardware, software and data. The
situation of interest is an assessment of the
weaknesses in the assurance mechanisms of a
computer network segment. These weaknesses may
be exploited to cause harm or loss of confidentiality,
integrity or availability. Assessing the risk faced by a
computing system involves an assessment of the

possible threats', their likelihood of occurrence
(exploitation), and the expected cost of the loss (or
harm). Finally, the system can be refined based on
the results of cost-benefits analysis. This requires
information on protective measures (controls or
countermeasures) appropriate for use to counter
particular vulnerabilities, as well as the relative costs
associated with deployment of these mechanisms,
The cost-benefit analysis attempts to determine if the
relative cost is less to implement a control or
countermeasure, or to accept the expected costs
associated with a breach of policy. This leads to the

_development of a security plan to improve the

assurance posture of a computer network system. [1]

(2]

7 IDEA ARCHITECTURE

The IDEA architecture is designed as an integration
mechanism for a wide range of external security
assessment tools and to be resilient to changes those

Integration Comporent Tool Component
7 interface Layes iy s interfate Layer .

Repository Component

Figure 4. IDEA’s Component Layered Architecture
integrates two complementary architecture styles to
minimize inter-component dependencies.

tools may impose. As such, IDEA interfaces to these
tools through various integration layers designed
into its Application Programming Interface (API).
IDEA was designed with an open, layered API so it
could be available to support as many tools as
possible. In the IDEA architecture, each tool has a

' Threats to computing systems are circumstances that have
the potential to cause loss or harm. Human attacks are

€X

amples of threats, as are natural disasters, inadvertent

human errors, and internal hardware or software flaws. There
are four kinds of threats to the security of a computing

system:

interruption, interception, modification and

fabrication.

277

potential contribution to the overall assurance
assessment of a given system. The IDEA user
determines which tools are executed for a given
assessment.

The IDEA design (Figure4) combines two
architectural styles: Components and Layers [5, 7].
The component style supports cohesion of behavior
by grouping related assessment functionality into the
components. The layer style supports loose coupling
through standards enforced by the interface.
Combining the component and layer styles, IDEA
achieves a flexible, highly maintainable architecture.

The functionality of system vulnerability analysis is
separated into three components. The layers
illustrated in Figure 4 are realized through the design
of each component.

o The Integration component — is responsible for

interaction with external users and/or
applications.

e The Tool component - provides direct
interaction with assessment tools.

e The Repository component - provides a

common data solution across tools and supports
persistence for the other components.

7.1 Integration Component

The Integration component supports behaviors
related to opening sessions, launching tools against a
model, and viewing tool results. The intent of this
design is to isolate management logic for session
control within the IDEA Engine layer. The IDEA
Interface layer is split into a GUI and API section. It
is intended that all interactions with the IDEA
Engine layer occur through calls to the APL. The API
provides all the necessary functions for external
applications to perform vulnerability assessments on
systems. That is, the Integration component is the
portion of the superstructure that tools and analysts
use to control tool execution.

The Integration component provides a complete set
of assessment operations for security engineers.
These operations support the discovery and design
of network nodes, the collection of node
configuration information, and the assessment of
vulnerabilities as supported through specific external
tools. Through the single interface of the Integration
component, the security engineer is able to discover

278

an existing network or design a network and perform
a comprehensive assessment of concealed
vulnerabilities.

7.2 Tool Component

The Tool component contains the logic for the
control of and interaction with external assessment
tools. The dominant feature of this component is
plug-in support for external tools. This support is
achieved with the Maker pattern [6], a combination
of the Abstract Factory and the Chain of
Responsibility patterns [4].

Current assessment tools maintain their information
within a file system structure or traditional database.
The Tool component integrates with external tool
storage capabilities, providing a data bridge across
individual external tools. Any other assessment tool
may use data collected by a given assessment tool.
This data bridge is implemented within the
Repository component. The Tool component
extracts external tool information and ships it to the
repository for storage. Information within the
repository that may prove useful to other tools is
collected by the Tool component.

The Tool component architecture supports rapid
integration of external assessment tools. Integration
impacts to the other components during integration
of new tools are minimal. The Tool component
supports a formal process to export tool capabilities
across the Tool component boundaries. We chose
this approach over the simple addition or
modification of an external tool to minimize the
impact on the external tools. Since IDEA has no
control over these tools, we have no insight into their
internal workings or alternative integration
strategies.

Through the tool interface layer, the Integration
component launches tools contained on the session's
tool list. Each tool is responsible for its own
repository data, and requests the model information
required from the Repository Component. Upon
completion of execution, each tool returns its
respective results to the repository. A filter between
the tool and the database converts tool output to a
normalized form that is stored in the repository. This
approach minimizes duplication of storage, and
ensures that each tool receives its information in the
format that it expects.

7.3 Repository Component

The Repository Component provides the database
used by both the IDEA and Tool components. The
design of the Repository component provides both a
single interface into the database and a conversion
layer to implement the logic required to convert data
between the tools and repository’s normalized
Common System Model.

Integration Component
facade

client

)

abstract
factory
app specific
r_ logic ﬁ
: \
Tool Component facade
I
abstract
factory
abstract chain of
| responsibility
app specific ——»| EOTS
logic

Repository Componen
facade

I
abstract
factory

data
storage

app specific
logic

Figure 5. Design patterns are applied to each component.

8 THE ARCHITECTURE AT WORK

The Tool component and the Repository component
work together to translate the results generated by
each assessment tool into a common format. This
format is stored within the CSM and is used by the
Tool component as it launches various assessment
tools. For example, discovery tools generate maps of
networks they discover as their outputs. Scanning
tools take this discovered information and the apply
it, targeting network specific nodes/devices (routers,

279

etc.) and collecting feature information (OS version,
etc.) about individual nodes. Once the attributes of
the network nodes have been collected, this
information is also stored in the CSM. The analysis
tools examine the attributes of the network nodes in
order to determine potential vulnerabilities. These
are examples of how three categories of tools can
share information among them. Each may use data
collected by another tool to provide a
complementary analysis. Each would, without the
integration provided by IDEA, require security
engineers to input redundant data for each tool,
requiring additional user input and introducing the
possibility for contradictory or incorrect information
to be applied in the analysis. IDEA reduces the
amount of effort necessary to successfully assess a
network. IDEA can also, again via the CSM, detect
when a tool may not have enough data to
successfully perform its task. In this case, the
security engineer is solicited for additional
information that may be required. IDEA can reduce
the amount of data entry required from the engineer
by actively sharing data among vulnerability tools
and, when more information is necessary, IDEA can
actively collect that information through user
interaction.

Various vulnerability assessment tools produce
differing, sometimes inaccurate or conflicting
results. Today, the security engineer determines
which pieces of data are significant and which are of
little consequence based on the expertise and
interpretive skills of the tool user. That is, the
repeatability of results depends wupon the
standardization of a given user’s interpretation of a
tool’s results. IDEA incorporates FuzzyFusion™
logic to combine the results of risk assessments
generated by individual vulnerability tools into a
consolidated, repeatable response.

Using the security profile information stored within
the Repository component, the consolidated
response is generated by comparing tool results
against the security profile data. Just as security
policies differ among enterprises, security profiles
differ from organization to organization as well.
Security engineers are able to define and apply their
own security profiles using IDEA’s Meta-Language.
These profiles are stored within the Repository and
used by FuzzyFusion™ to correlate the vulnerability
information collected. IDEA supports a basic set of
requirements derived from the Trusted Computer
System Evaluation Criteria (TCSEC), the Trusted

Network Interpretation of the TCSEC (TNI), and the
Common Criteria. The engineer can tailor the basic
set of requirements associated with a given security
function to address the requirements associated with
a given enterprise.

The Repository component is aware of the
configuration of the various tools and how tool
result data is to be stored in the CSM. Inserting a
new tool into the IDEA framework consists of four
easy steps:

1. Writing a driver for the tool.

2. Mapping the tool’s input data to the CSM and
security profile

3. Mapping the tool’s output data to the CSM and
security profile.

4. Defining the tool configuration information
within the Repository component.

This is primarily a database-centric architecture. The
repository is responsible for interpreting among tool
data, CSM data, and security profile data.

The Tool component is used to pass this data to and
from the external tools and the CSM. The Tool
component is composed of several software patterns,
enabling a complete data-level decoupling between
the other two components and providing plug-in
support for external tools. The decoupling is done
with the Fagade pattern. The plug-in is done with the
Maker pattern.

The Integration component combines the capabilities
of the Tool and Repository component, presenting
the system engineer with a suite of capabilities for
vulnerability assessment.

9 PATTERN APPLICATION

All three components are designed using a consistent
application of a set of software design patterns
(Figure 5) supporting loose coupling (minimizing
cross-component dependencies), and tight cohesion
(maximizing inter-component collaborations).

The Interface layer of each component is composed
of a Facade and Abstract Factory pattern [4]. This
set of patterns is used to enforce a decoupling
between external clients and component-internal
data structures. The Fagade pattern provides external
clients with a set of assessment capabilities. The
Abstract Factory pattern is used to manage the

creation of component-internal objects to handle
external requests.

The Integration component’s Fagade pattern
supports network design and discovery by passing
the operations on to the Tool component for
direction. Network scanning and analysis are also
passed to the Tool component for handling.
Operations for viewing tool results are directed to
the Repository component. The Integration
component allows all external clients (GUI, scripts,
external tools, etc.) access to vulnerability
assessment and management operations.

The Tool component’s Fagade supports the
launching of external tools. This design purposefully
minimizes direct tool interaction from the Tool
component’s clients. The tool component uses the
Maker pattern [6] to support the plug-in integration
of external tools with minimum impact to existing
code. Adding interfaces to external tools is as simple
as adding a new class to handle the interaction with
the Tool Component. Common calling techniques
are enforced, ensuring that basic code modifications
are uncomplicated and limited in scope.

The Repository component’s Fagade supports data
storage and retrieval operations. This API is more
flexible, allowing the Tool component to retrieve
any necessary configuration and setup information
for external tools. Tool result storage is also
supported through this interface. At the backend of
the Repository fagade, a data interpreter ensures that
tool data and CSM data are mapped to each other.
The Integration component uses this interface to
collect and store information for the security
engineer.

10 CONCLUSIONS

The IDEA program provides the first information
superstructure, an important support component for
security design and assessment. The IDEA
architecture facilitates the definition of security
policies via a meta-language, provides a single point
of entry to a potentially wide selection of security
assessment tools, and incorporates FuzzyFusion™
analysis to generate a common operational picture
for the security engineer. Bringing all these
capabilities together in an open software architecture
provides an invaluable tool for the security engineer.
It also provides a collection of value-added
functionality for external tool vendors wishing to

take advantage of its support for security policy
engineering and/or FuzzyFusion™ analysis.
FuzzyFusion™ provides evidential reasoning among
disparate sources of vulnerability assessment
information. The result: repeatable, rapid
vulnerability assessments, enabling the security
engineer to address system security issues
efficiently. The eight base security measures
identified during meta-language development are
inherently useful for categorizing output results from
FuzzyFusion™,

The meta-language standard for defining security
policy information provides a useful basis for
identification of policy building and policy
enforcing tool suites.

11 RESULTS

Our research has resulted in a four-stage model of
vulnerability fusion. This model is designed to
reflect the global nature of a large enterprise, the
increased dependence on inter-networks of
information, and the vulnerabilities associated with
individual network segments and devices. We have
embodied the model in an information
superstructure for vulnerability assessment tools,
creating an integrated environment to provide the
security engineer with a powerful tool suite. The
model has been successfully applied to static
vulnerability analysis, and has been integrated with
current vulnerability assessment technologies for
vulnerability identification and correlation.

The information superstructure can be applied to
system designs to determine design vulnerabilities
prior to implementation of a given system
architecture. It can also be applied to legacy
architectures to determine if the security posture of
the system has been modified from the initial
baseline. In either event, IDEA provides a repeatable
set of results that can be used by an enterprise to
provide a more comprehensive perspective on its
security posture.

12 FUTURE WORK

The IDEA program leads the way in several
vulnerability assessment technologies.

FuzzyFusion™, the process of consolidating and
merging results of incongruent information sources
has application outside the information assurance

281

‘research has

arena. Harris is studying other domains for
FuzzyFusion™ technology insertion. Harris is
incorporating FuzzyFusion™ technology into its
STAT® intrusion detection tool suite.

The security-centered meta-language builds inroads
into collecting and documenting security profiles.
Future work with the meta-language include design
analysis tools which compare existing or
hypothetical system networks with security profiles.
Another avenue is automating the generation of
security profiles given a system network.

The Common System Model provides the start of an
information assurance data model standard. A
common data format among assurance tools would
be a boon to security engineers and greatly simplify
vulnerability analysis.

While research into quantifiable assurance metrics
continues, Harris has identified 8 supporting
measures related to access. These measures offer a
solid inroad into measuring system security. Our
conclusion that standard probability calculations
simplify the measurement of assurance allows us to
focus on identifying high-probability access points
to the system and point security engineers to security
policy weaknesses and violations.

13 ACKNOWLEDGEMENTS

This research was conducted in part under a contract
with the Defensive Information Warfare Branch of
the U.S. Air Force Research Laboratory at Rome,
NY (contract #F30602-00-C-0067). Additional
been conducted under Harris
Corporation’s Internal Research & Development
program.

14 REFERENCES

m Charles P. Pfleeger, Security in Computing, Prentice Hall
PTR, Upper Saddle River, NJ, 1997.

[2] Deborah Russell and G. T. Gangemi, Computer Security
Basics, O’Reilly & Associates, Inc. 1991.

[3] Lofti A. Zadeh, “The Calculus of Fuzzy If/Then Rules”,
AI Expert, March 1992, Pp. 23-27.

4] Erich Gamma, [et al.), Design Patterns Elements of
Reusable Object-Oriented Sofiware, Addison-Wesley
Publishing Company, Inc., 1995.

[5] Frank Buschmann, [et al.], Pattern-Oriented Software
Architecture, John Wiley & Sons Ltd., 1998.

[6] T. Culp, “Industrial Strength Pluggable Factories”, C++
Report, 11(9), Oct. 1999.

[71 - M. Shaw, D. Garlan, Software Architecture, Prentice-
Hall, Inc., Upper Saddle River, NJ, 1996.

ABOUT THE AUTHORS

Joseph O. Tallet received the B.S. degree in Computer Science
from the Florida Institute of Technology, of Melbourne FL in
1988, the M.S. degree in Computer Science in 1994 from the
Florida Institute of Technology.

He is the Chief Software Engineer and Software Architect
for the IDEA Project. A member of Harris” Software Architecture
Tools, Methods, and Technology Team, he actively participates in
Harris” software process improvement, training, and is the reuse
point of contact for Harris* Govermment Communication Systems
Division (GCSD).

Ronda R. Henning received the B.A. from the University of
Pittsburgh, the M.S. in Computer Science from Johns Hopkins
University, and the M.B.A. from the Florida Institute of
Technology. She is also a Certified Information Systems Security
Professional (CISSP).

She is the senior Security Systems Engineer for Harris
Corporation’s Government Communications Systems Division.
She currently leads the Information Assurance center of
excellence, an interdisciplinary engineering group responsible for
Information Assurance technology research and development, as
well as assurance technology insertion on large-scale system
integration opportunities. As a member of the Harris Engineering
Process Group, she developed the Harris Secure Systems
Engineering Guidebook. She was a founding member of the
NSA/Industry consortium responsible for the System Security
Engineering Capability Maturity Model (SSE-CMM). Prior to her
employment at Harris, she was a deputy branch chief of
information security research and development at NSA.

Kevin L. Fox received the B.S. degree in Mathematics from the
University of the South, Sewanee, TN in 1981, the M.S. degree in

U.5. GOVERNMENT PRINTING OFFICE:

282

Mathematical Sciences from Clemson University in 1983, and the
Ph.D. in Mathematical Sciences from Clemson University in
1987.

Since then, he has been a software engineer with Harris
Corporation's Government Communications Systems Division.
His research interests have spanned a variety of Information
Technologies, including information retrieval, databases, natural
language processing, neural networks and data fusion. Since
1998, he has been conducting research on tools to support
Security Engineers in the assessment of existing networked
systems for vulnerability and risks, as well as the design new
networked systems to meet security requirements.

Dr. Fox is a member of the IEEE and the IEEE Computer
Society.

2002~710-038-10196

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

